Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T15:56:58.740Z Has data issue: false hasContentIssue false

Tidal friction in close-in planets

Published online by Cambridge University Press:  01 October 2007

Adrián Rodríguez
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas, University of São Paulo Rua do Matão, 1226, CEP 05508-900, São Paulo, Brasil email: [email protected], [email protected]
Sylvio Ferraz-Mello
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas, University of São Paulo Rua do Matão, 1226, CEP 05508-900, São Paulo, Brasil email: [email protected], [email protected]
Hauke Hussmann
Affiliation:
Institut für Planetenforschung, DLR, Berlim-Adlershof, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use Darwin's theory (Darwin, 1880) to derive the main results on the orbital and rotational evolution of a close-in companion (exoplanet or planetary satellite) due to tidal friction. The given results do not depend on any assumption linking the tidal lags to the frequencies of the corresponding tide harmonics (except that equal frequency harmonics are assumed to span equal lags). Emphasis is given to the study of the synchronization of the planetary rotation in the two possible final states for a non-zero eccentricity : (1) the super-synchronous stationary rotation resulting from the vanishing of the average tidal torque; (2) the capture into a 1:1 spin-orbit resonance (true synchronization), which is only possible if an additional torque exists acting in opposition to the tidal torque. Results are given under the assumption that this additional torque is produced by a non-tidal permanent equatorial asymmetry of the planet. The indirect tidal effects and some non-tidal effects due to that asymmetry are considered. For sake of comparison with other works, the results obtained when tidal lags are assumed proportional to the corresponding tidal wave frequencies are also given.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Darwin, G. H., 1880, Philos. Trans. 171, 713 (repr. Scientific Papers, Cambridge, Vol. II, 1908).Google Scholar
Dobbs-Dixon, I., Lin, D. N. C., and Mardling, R. A., 2004, Astrophys. J. 610, 464CrossRefGoogle Scholar
Ferraz-Mello, S., Rodríguez, A. & Hussmann, H., 2007, Cel. Mech. Dynam. Astron. (submitted). ArXiv: astro-ph 0712.1156Google Scholar
Goldreich, P. 1966, Astron. J. 71, 1CrossRefGoogle Scholar
Hut, P., 1981, Astron. Astrophys. 99, 126Google Scholar
Kaula, W. M. 1964, Rev. Geophys. 3, 661CrossRefGoogle Scholar
Lemaitre, A., D'Hoedt, S., & Rambaux, N., 2006, Cel. Mech. Dynam. Astron. 95, 213CrossRefGoogle Scholar
Levrard, B., 2008, Icarus (in press)Google Scholar
MacDonald, G. F., 1964, Rev. Geophys. 2, 467.CrossRefGoogle Scholar
Mardling, R. A. & Lin, D. N. C., 2004 Astrophys. J. 614, 955CrossRefGoogle Scholar
Peale, S. J. & Cassen, P., 1978, Icarus, 36, 245269.CrossRefGoogle Scholar
Segatz, M., Spohn, T., Ross, M. N., & Schubert, G., 1988, Icarus, 75, 187206.CrossRefGoogle Scholar
Wisdom, J., 2008, Icarus (in press).Google Scholar