Published online by Cambridge University Press: 26 February 2010
The thermosphere is the transition region from the atmosphere to space. Both the solar ultraviolet radiation and the solar wind energy inputs have caused significant thermospheric variations from past to present. In order to understand thermospheric/ionospheric disturbances in association with changes in solar activity, observational and modelling efforts have been made by many researchers. Recent satellite observations, e.g., the satellite CHAMP, have revealed mass density variations in the upper thermosphere. The thermospheric temperature, wind, and composition variations have been also investigated with general/global circulation models (GCMs) which include forcings due to the solar wind energy inputs and the lower atmospheric effects. In particular, we have developed a GCM which covers all the atmospheric regions, troposphere, stratosphere, mesosphere, and thermosphere, to describe variations of the thermospheric temperature and density caused by both effects from the lower atmosphere and the magnetosphere. GCM simulations represent global and localized temperature and density structures, which vary from hour to hour, depending on forcings due to the lower atmosphere, solar and geomagnetic activities. This modelling attempt will enable us to describe the thermospheric weather influenced by solar activity in cooperation with ground-based and satellite observations.