Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T20:53:38.207Z Has data issue: false hasContentIssue false

Thermonuclear Supernova Explosions from White Dwarfs in Different Progenitor Systems

Published online by Cambridge University Press:  17 January 2013

F. K. Röpke*
Affiliation:
Universität Würzburg, Emil-Fischer-Str. 31, D-97074 Würzburg, Germany Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany
S. A. Sim
Affiliation:
Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611, Australia
M. Fink
Affiliation:
Universität Würzburg, Emil-Fischer-Str. 31, D-97074 Würzburg, Germany Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany
R. Pakmor
Affiliation:
Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany
M. Kromer
Affiliation:
Universität Würzburg, Emil-Fischer-Str. 31, D-97074 Würzburg, Germany
I. R. Seitenzahl
Affiliation:
Universität Würzburg, Emil-Fischer-Str. 31, D-97074 Würzburg, Germany Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany
A. J. Ruiter
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany
W. Hillebrandt
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Several progenitor scenarios have been suggested for Type Ia supernovae. Here we discuss the consequences for the explosion mechanism and for observables of some of them, which are explored by means of multi-dimensional hydrodynamic and radiation transfer simulations. While the observables predicted from delayed detonations of Chandrasekhar-mass white dwarfs agree reasonably well with the data, the corresponding progenitor systems may be too rare to account for the observed rate of Type Ia supernovae. Several alternatives are investigated of which violent mergers of two white dwarfs and, perhaps, double detonations of sub-Chandrasekhar mass white dwarfs hold promise for reproducing the observables of normal Type Ia supernovae.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Arnett, W. D. 1969, Ap&SS, 5, 180Google Scholar
Blondin, S., Kasen, D., Röpke, F. K., Kirshner, R. P., & Mandel, K. S. 2011, MNRAS, 1228Google Scholar
Branch, D., Baron, E., Thomas, R. C., et al. 2004, PASP, 116, 903Google Scholar
Gilfanov, M. & Bogdán, Á. 2010, Nature, 463, 924Google Scholar
Höflich, P. & Stein, J. 2002, ApJ, 568, 779Google Scholar
Howell, D. A., Sullivan, M., Nugent, P. E., et al. 2006, Nature, 443, 308Google Scholar
Jackson, A. P., Calder, A. C., Townsley, D. M., et al. 2010, ApJ, 720, 99Google Scholar
Kasen, D., Röpke, F. K., & Woosley, S. E. 2009, Nature, 460, 869Google Scholar
Khokhlov, A. M. 1991, A&A, 245, 114Google Scholar
Krueger, B. K., Jackson, A. P., Townsley, D. M., et al. 2010, ApJ, 719, L5Google Scholar
Kuhlen, M., Woosley, S. E., & Glatzmaier, G. A. 2006, ApJ, 640, 407CrossRefGoogle Scholar
Leonard, D. C. 2007, ApJ, 670, 1275Google Scholar
Li, W., Leaman, J., Chornock, R., et al. 2011, MNRAS, 412, 1441Google Scholar
Maeda, K., Benetti, S., Stritzinger, M., et al. 2010, Nature, 466, 82Google Scholar
Marietta, E., Burrows, A., & Fryxell, B. 2000, ApJS, 128, 615Google Scholar
Mazzali, P. A., Röpke, F. K., Benetti, S., & Hillebrandt, W. 2007, Science, 315, 825Google Scholar
Pakmor, R., Hachinger, S., Roepke, F. K., & Hillebrandt, W. 2011, ArXiv e-printsGoogle Scholar
Pakmor, R., Kromer, M., Röpke, F. K., et al. 2010, Nature, 463, 61CrossRefGoogle Scholar
Pakmor, R., Röpke, F. K., Weiss, A., & Hillebrandt, W. 2008, A&A, 489, 943Google Scholar
Pfannes, J. M. M., Niemeyer, J. C., & Schmidt, W. 2010a, A&A 509 A75+Google Scholar
Pfannes, J. M. M., Niemeyer, J. C., Schmidt, W., & Klingenberg, C. 2010b, A&A 509 A74+Google Scholar
Phillips, M. M. 1993, ApJ, 413, L105Google Scholar
Phillips, M. M., Li, W., Frieman, J. A., et al. 2007, PASP, 119, 360Google Scholar
Phillips, M. M., Lira, P., Suntzeff, N. B., et al. 1999, AJ, 118, 1766Google Scholar
Poludnenko, A. Y., Gardiner, T. A., & Oran, E. S. 2011, ArXiv e-printsGoogle Scholar
Röpke, F. K. 2007, ApJ, 668, 1103Google Scholar
Röpke, F. K., Gieseler, M., Reinecke, M., Travaglio, C., & Hillebrandt, W. 2006a, A&A, 453, 203Google Scholar
Röpke, F. K., Hillebrandt, W., Niemeyer, J. C., & Woosley, S. E. 2006b, A&A, 448, 1Google Scholar
Röpke, F. K., Hillebrandt, W., Schmidt, W., et al. 2007, ApJ, 668, 1132Google Scholar
Röpke, F. K. & Niemeyer, J. C. 2007, A&A, 464, 683Google Scholar
Ruiter, A. J., Belczynski, K., & Fryer, C. 2009, ApJ, 699, 2026Google Scholar
Ruiter, A. J., Belczynski, K., Sim, S. A., et al. 2011, MNRAS, 1282Google Scholar
Saio, H. & Nomoto, K. 1985, A&A, 150, L21Google Scholar
Saio, H. & Nomoto, K. 1998, ApJ, 500, 388Google Scholar
Seitenzahl, I. R., Ciaraldi-Schoolmann, F., & Röpke, F. K. 2011, MNRAS, in preparationGoogle Scholar
Steinmetz, M., Muller, E., & Hillebrandt, W. 1992, A&A, 254, 177Google Scholar
Taubenberger, S., Benetti, S., Childress, M., et al. 2011, MNRAS, 412, 2735Google Scholar
Woosley, S. E. 2007, ApJ, 668, 1109Google Scholar
Woosley, S. E., Kerstein, A. R., Sankaran, V., Aspden, A. J., & Röpke, F. K. 2009, ApJ, 704, 255Google Scholar
Zingale, M., Almgren, A. S., Bell, J. B., Nonaka, A., & Woosley, S. E. 2009, ApJ, 704, 196Google Scholar