Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T17:13:29.776Z Has data issue: false hasContentIssue false

Thermal X-ray Spectra of Supernova Remnants

Published online by Cambridge University Press:  29 January 2014

Patrick Slane*
Affiliation:
Harvard-Smithsonian Center for Astrophysics 60 Garden Street Cambridge, MA 02138USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The fast shocks that characterize supernova remnants heat circumstellar and ejecta material to extremely high temperatures, resulting in significant X-ray emission. The X-ray spectrum from an SNR carries a wealth of information about the temperature and ionization state of the plasma, the density distribution of the postshock material, and the composition of the ejecta. This, in turn, places strong constraints on the properties of the progenitor star, the explosive nucleosynthesis that produced the remnant, the properties of the environment into which the SNR expands, and the effects of particle acceleration on its dynamical evolution. Here I present results from X-ray studies SNRs in various evolutionary states, and highlight key results inferred from the thermal emission.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Badenes, C.et al. 2008, ApJ, 680, 1149Google Scholar
Castro, D.et al. 2011, ApJ, 734, 86Google Scholar
Castro, D.et al. 2012, ApJ, 756, 88CrossRefGoogle Scholar
Chevalier, R. A. 2005, ApJ, 619, 839CrossRefGoogle Scholar
Ellison, D. C.et al. 2010, ApJ, 712, 287CrossRefGoogle Scholar
Ellison, D. C.et al. 2012, ApJ, 744, 39CrossRefGoogle Scholar
Gaensler, B. M. & Slane, P. 2006, ARAA, 44, 17Google Scholar
Gaetz, T. J.et al. 2000, ApJ, 534, L47Google Scholar
Ghavamian, P.et al. 2007, ApJ, 654, L69CrossRefGoogle Scholar
Gonzalez, M. & Safi-Harb, S. 2003, ApJ, 583, L91CrossRefGoogle Scholar
Hughes, J. P. & Singh, K. P. 1994, ApJ, 422, 126Google Scholar
Hughes, J. P.et al. 1995, ApJ, 444, L81Google Scholar
Hughes, J. P.et al. 2000a, ApJ, 528, L109Google Scholar
Hughes, J. P.et al. 2000b, ApJ, 543, L61Google Scholar
Hwang, U. & Laming, J. M. 2012, ApJ, 746, 130Google Scholar
Inoue, K.et al. 2012, ApJ, 744, 71CrossRefGoogle Scholar
Iwamoto, K.et al. 1999, ApJS, 125, 439CrossRefGoogle Scholar
Kawasaki, M.et al. 2005, ApJ, 631, 935Google Scholar
Lee, J. J.et al. 2010, ApJ, 711, 861CrossRefGoogle Scholar
Lewis, K. T.et al. 2003, ApJ, 582, 770CrossRefGoogle Scholar
Lopez, L. A.et al. 2011, ApJ, 732, 114Google Scholar
Miceli, M.et al. 2010, A&A, 514, L2Google Scholar
Moriya, T. J. 2012, ApJ, 750, L13CrossRefGoogle Scholar
Ozawa, M.et al. 2009, ApJ, 706, L71Google Scholar
Park, S.et al. 2004, ApJ, 602, L33CrossRefGoogle Scholar
Park, S.et al. 2013, ApJ (in press; arXiv:1302.5435)Google Scholar
Rest, A.et al. 2008, ApJ, 680, 1137Google Scholar
Reynolds, S. P.et al. 2007, ApJ, 668, L135Google Scholar
Vink, J. 2012, A&AR, 20, 49Google Scholar
Warren, J. S.et al. 2005, ApJ, 634, 376CrossRefGoogle Scholar
Yamaguchi, H.et al. 2009, ApJ, 705, L6CrossRefGoogle Scholar