Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T15:49:49.787Z Has data issue: false hasContentIssue false

Theoretical Stellar Pulsation Physics

Published online by Cambridge University Press:  06 February 2024

M. Marconi*
Affiliation:
INAF-Osservatorio Astronomico di Capodimonte
G. De Somma
Affiliation:
INAF-Osservatorio Astronomico di Capodimonte
R. Molinaro
Affiliation:
INAF-Osservatorio Astronomico di Capodimonte
I. Musella
Affiliation:
INAF-Osservatorio Astronomico di Capodimonte
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Pulsating stars play a crucial role in the calibration of the cosmic distance scale as well as in tracing the properties of the associated stellar populations. In the era of large observational surveys and precise astrometric missions, it is crucial to rely on accurate stellar pulsation models able to predict the observed behaviors for different physical assumptions. Indeed, the relations currently used in the literature to derive individual and mean distances of mainly radially pulsating stars such as Cepheids and RR Lyrae are well physically understood, but are also known to depend on a number of often unknown parameters. Recent extensive sets of stellar pulsation models developed by various authors show how variations in the physical assumptions can affect the theoretical prediction of the instability strip boundaries, the morphology and amplitude of light and radial velocity curves, and the consequent Period-Luminosity, Period-Luminosity-Color and Period-Wesenheit relations. These aspects are discussed in the framework of current open problems in the field of classical pulsating stars.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Anderson, R. I., Saio, H., Ekström, S., et al. 2016, A&AS, 591, A8. doi: 10.1051/0004-6361/201528031 Google Scholar
Bhardwaj, A., Marconi, M., Rejkuba, M., et al. 2023, ApJL, 944, L51. doi: 10.3847/2041-8213/acba7f Google Scholar
Bono, G. & Stellingwerf, R. F. 1994, ApJS, 93, 233. doi: 10.1086/192054 Google Scholar
Bono, G., Marconi, M., & Stellingwerf, R. F. 1999, ApJS, 122, 167. doi: 10.1086/313207 Google Scholar
Bono, G., Caputo, F., Cassisi, S., et al. 2000, ApJ, 543, 955. doi: 10.1086/317156 Google Scholar
Bono, G., Marconi, M., & Stellingwerf, R. F. 2000, A&A, 360, 245. doi: 10.48550/arXiv.astro-ph/0006229 Google Scholar
Bono, G., Castellani, V., & Marconi, M. 2002, ApJL, 565, L83. doi: 10.1086/339420 Google Scholar
Bono, G., Marconi, M., Cassisi, S., et al. 2005, ApJ, 621, 966. doi: 10.1086/427744 Google Scholar
Braga, V. F., Stetson, P. B., Bono, G., et al. 2016, AJ, 152, 170. doi: 10.3847/0004-6256/152/6/170 Google Scholar
Breuval, L., Riess, A. G., Kervella, P., et al. 2022 ApJ 939, 89. doi: 10.3847/1538-4357/ac97e2 Google Scholar
Caputo, F., Marconi, M., & Musella, I. 2000, A&A, 354, 610. doi: 10.48550/arXiv.astro-ph/9911441 Google Scholar
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245. doi: 10.1086/167900 Google Scholar
Castelli, F. & Kurucz, R. L. 2003, Modelling of Stellar Atmospheres, 210, A20. doi: 10.48550/arXiv.astro-ph/040508 Google Scholar
Catelan, M., Pritzl, B. J., & Smith, H. A. 2004, ApJS, 154, 633. doi: 10.1086/422916 Google Scholar
Chiosi, C., Wood, P. R., & Capitanio, N. 1993, ApJS, 86, 541. doi: 10.1086/191790 Google Scholar
Clementini, G., Ripepi, V., Garofalo, A., et al. 2022, arXiv:2206.06278. doi: 10.48550/arXiv.2206.06278 Google Scholar
Cox, A. N. & Hodson, S. W. 1978, The HR Diagram - The 100th Anniversary of Henry Norris Russell, 80, 237Google Scholar
De Somma, G., Marconi, M., Molinaro, R., et al. 2020, ApJS, 247, 30. doi: 10.3847/1538-4365/ab7204 CrossRefGoogle Scholar
De Somma, G., Marconi, M., Cassisi, S., et al. 2020, MNRAS, 496, 5039. doi: 10.1093/mnras/staa1834 Google Scholar
De Somma, G., Marconi, M., Cassisi, S., et al. 2021, MNRAS, 508, 1473. doi: 10.1093/mnras/stab2611 Google Scholar
De Somma, G., Marconi, M., Molinaro, R., et al. 2021, RR Lyrae/Cepheid 2019: Frontiers of Classical Pulsators, 529, 27Google Scholar
De Somma, G., Marconi, M., Molinaro, R., et al. 2022, ApJS, 262, 25. doi: 10.3847/1538-4365/ac7f3b Google Scholar
Deupree, R. 2021, RR Lyrae/Cepheid 2019: Frontiers of Classical Pulsators, 529, 111Google Scholar
Di Criscienzo, M., Marconi, M., & Caputo, F. 2004, ApJ, 612, 1092. doi: 10.1086/422742 Google Scholar
Eddington, A. S. 1918, MNRAS, 79, 2 Google Scholar
Fiorentino, G., Marconi, M., Musella, I., et al. 2007, A&A, 476, 863. doi: 10.1051/0004-6361:2007758 Google Scholar
Freedman, W. L. & Madore, B. F. 2010, ARA&A, 48, 673. doi: 10.1146/annurev-astro-082708-101829 Google Scholar
Collaboration, Gaia, Clementini, G., Eyer, L., et al. 2017, A&A, 605, A79. doi: 10.1051/0004-6361/201629925 Google Scholar
Gehmeyr, M. 1992, ApJ, 399, 265. doi: 10.1086/171921 Google Scholar
Hertzsprung, E. 1926, Bulletin of the Astronomical Institutes of the Netherlands, 3, 115Google Scholar
Yecho, P., Kollath, Z., & Buchler, J. R. 1997, IAU Joint DiscussionGoogle Scholar
Keller, S. C. & Wood, P. R. 2002, ApJ, 578, 144. doi: 10.1086/342315 Google Scholar
Keller, S. C. & Wood, P. R. 2002, ApJ, 578, 144. doi: 10.1086/342315 Google Scholar
Keller, S. C. & Wood, P. R. 2006, ApJ, 642, 834. doi: 10.1086/501115 Google Scholar
Kolenberg, K., Bryson, S., Szabó, R., et al. 2011, MNRAS, 411, 878. doi: 10.1111/j.1365-2966.2010.17728.x CrossRefGoogle Scholar
Kolláth, Z., Buchler, J. R., Szabó, R., et al. 2002, A&A, 385, 932. doi: 10.1051/0004-6361:20020182 Google Scholar
Kovacs, G. & Karamiqucham, B. 2021, A&A, 653, A61. doi: 10.1051/0004-6361/202141100 Google Scholar
Kovács, G. B., Nuspl, J., & Szabó, R. 2023, MNRAS, 521, 4878. doi: 10.1093/mnras/stad884 Google Scholar
Longmore, A. J., Dixon, R., Skillen, I., et al. 1990, MNRAS, 247, 684 Google Scholar
Madore, B. F. 1982, ApJ, 253, 575. doi: 10.1086/159659 Google Scholar
Marconi, M., Bono, G., Caputo, F., et al. 2006, memSAI, 77, 67. doi: 10.48550/arXiv.astro-ph/0510033 Google Scholar
Marconi, M., Musella, I., & Fiorentino, G. 2005, ApJ, 632, 590. doi: 10.1086/432790 Google Scholar
Marconi, M. & Degl’Innocenti, S. 2007, A&A, 474, 557. doi: 10.1051/0004-6361:20065840 Google Scholar
Marconi, M., Molinaro, R., Ripepi, V., et al. 2013, MNRAS, 428, 2185. doi: 10.1093/mnras/sts197 Google Scholar
Marconi, M., Molinaro, R., Bono, G., et al. 2013, ApJL, 768, L6. doi: 10.1088/2041-8205/768/1/L6 Google Scholar
Marconi, M., Coppola, G., Bono, G., et al. 2015, ApJ, 808, 50. doi: 10.1088/0004-637X/808/1/50 Google Scholar
Marconi, M., Molinaro, R., Ripepi, V., et al. 2017, MNRAS, 466, 3206. doi: 10.1093/mnras/stw3289 Google Scholar
Marconi, M., Bono, G., Pietrinferni, A., et al. 2018, ApJL, 864, L13. doi: 10.3847/2041-8213/aada17 Google Scholar
Marconi, M., Molinaro, R., Ripepi, V., et al. 2021, MNRAS, 500, 5009. doi: 10.1093/mnras/staa3558 Google Scholar
Marconi, M., Molinaro, R., Dall’Ora, M., et al. 2022, ApJ, 934, 29. doi: 10.3847/1538-4357/ac78ee CrossRefGoogle Scholar
Martnez-Vázquez, C. E., Monelli, M., Cassisi, S., et al. 2021, MNRAS, 508, 1064. doi: 10.1093/mnras/stab2493 Google Scholar
Martnez-Vázquez, C. E., Stetson, P. B., Monelli, M., et al. 2016, MNRAS, 462, 4349. doi: 10.1093/mnras/stw1895 Google Scholar
Mundprecht, E., Muthsam, H. J., & Kupka, F. 2013, MNRAS, 435, 3191. doi: 10.1093/mnras/stt1511 Google Scholar
Mundprecht, E., Muthsam, H. J., & Kupka, F. 2015, MNRAS, 449, 2539. doi: 10.1093/mnras/stv434 Google Scholar
Natale, G., Marconi, M., & Bono, G. 2008, ApJL, 674, L93. doi: 10.1086/526518 Google Scholar
Neeley, J. R., Marengo, M., Bono, G., et al. 2017, ApJ, 841, 84. doi: 10.3847/1538-4357/aa713d CrossRefGoogle Scholar
Netzel, H., Smolec, R., Soszyński, I., et al. 2018, MNRAS, 480, 1229. doi: 10.1093/mnras/sty1883 Google Scholar
Paxton, B., Smolec, R., Schwab, J., et al. 2019, ApJS, 243, 10. doi: 10.3847/1538-4365/ab2241 Google Scholar
Ragosta, F., Marconi, M., Molinaro, R., et al. 2019, MNRAS, 490, 4975. doi: 10.1093/mnras/stz2881 Google Scholar
Riess, A. G., Casertano, S., Yuan, W., et al. 2021, ApJL, 908, L6. doi: 10.3847/2041-8213/abdbaf Google Scholar
Riess, A. G., Breuval, L., Yuan, W., et al. 2022, ApJ, 938, 36. doi: 10.3847/1538-4357/ac8f24 Google Scholar
Ripepi, V., Catanzaro, G., Molinaro, R., et al. 2021, MNRAS, 508, 4047. doi: 10.1093/mnras/stab2460 Google Scholar
Smolec, R. & Moskalik, P. 2008, AcA, 58, 193. doi: 10.48550/arXiv.0809.1979 Google Scholar
Szabó, R., Kolláth, Z., & Buchler, J. R. 2004, A&A, 425, 627. doi: 10.1051/0004-6361:20035698 Google Scholar
Trentin, E., Ripepi, V., Catanzaro, G., et al. 2023, MNRAS, 519, 2331. doi: 10.1093/mnras/stac2459 Google Scholar
van Albada, T. S. & Baker, N. 1971, ApJ, 169, 311. doi: 10.1086/151144 Google Scholar
Verde, L., Treu, T., & Riess, A. G. 2019, Nature Astronomy, 3, 891. doi: 10.1038/s41550-019-0902-0 Google Scholar
Wood, P. R., Arnold, S., A., & Sebo, K. M. 1997, ApJL, 485, L25. doi: 10.1086/310798 Google Scholar
Zhevakin, S. A. 1963, ARA&A, 1, 367. doi: 10.1146/annurev.aa.01.090163.002055 Google Scholar