Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T10:59:13.873Z Has data issue: false hasContentIssue false

Theoretical estimates of the convective turnover time for low-mass, rotating pre-main sequence stars

Published online by Cambridge University Press:  01 August 2006

L. T. S. Mendes
Affiliation:
Depto. de Engenharia Eletrônica, UFMG, C.P. 702, 31270-901 B. Horizonte, MG, Brazil email: [email protected] Depto. de Física, UFMG, C.P. 702, 31270-901 Belo Horizonte, MG, Brazil email: [email protected], [email protected]
N. R. Landin
Affiliation:
Depto. de Física, UFMG, C.P. 702, 31270-901 Belo Horizonte, MG, Brazil email: [email protected], [email protected]
L. P. R. Vaz
Affiliation:
Depto. de Física, UFMG, C.P. 702, 31270-901 Belo Horizonte, MG, Brazil email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Rossby number Ro is an important quantity related to the well-known magnetic activity-rotation correlation for main sequence, solar-type stars. For such stars, Ro can be obtained by a semi-empirical relationship between the convective turnover time τc and the B-V colour index, but an equivalent activity-rotation correlation seems not to exist for pre-main sequence stars. In this work we report theoretical estimates of τc for low-mass, rotating pre-main sequence stars under either the Full Spectrum of Turbulence (FST) or the classical Mixing Length Theory (MLT) convection models. The results for the MLT models show that the lower the convection efficiency the higher τc, while the FST models give τc lower than those for the MLT. The presence of a parametric magnetic field lowers the convection efficiency, resulting in smaller τc values.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Canuto, V.M., Goldman, I., & Mazzitelli, I. 1996, ApJ 473, 550CrossRefGoogle Scholar
Gough, D.O. & Tayler, R.J. 1966, MNRAS 133, 85CrossRefGoogle Scholar
Kawaler, S.D. 1987, PASP 99, 1322CrossRefGoogle Scholar
Landin, N., Ventura, P., D'Antona, F., Mendes, L.T.S., & Vaz, L.P.R. 2006, A&A 456, 269Google Scholar
Mendes, L.T.S., D'Antona, F., & Mazzitelli, I. 1999, A&A 341, 174Google Scholar
Noyes, R.W., Hartmann, L.W., Baliunas, S.L., Duncan, D.K., & Vaughan, A.H. 1984, ApJ 279, 763CrossRefGoogle Scholar
Pizzolato, N., Ventura, P., D'Antona, F., Maggio, A., Micela, G., & Sciortino, S. 2001, A&A 373, 597Google Scholar
Pizzolato, N., Maggio, A., Micela, G., Sciortino, S., & Ventura, P. 2003, A&A 397, 143Google Scholar
Preibisch, T., Kim, Y.-C., Favata, F., Feigelson, E.D., Flaccomio, E., Getman, K., Micela, G., Sciortino, S., Stassun, K., Stelzer, B., & Zinnecker, H. 2005, ApJS 160, 401CrossRefGoogle Scholar
Stassun, K.G., Ardila, D.R., Basri, G., & Mathieu, R.D. 2004, AJ 127, 3537CrossRefGoogle Scholar
Ventura, P., Zeppieri, A., Mazzitelli, I., & D'Antona, F. 1998, A&A 334, 953Google Scholar