Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T20:43:26.175Z Has data issue: false hasContentIssue false

Theoretical Delay Time Distributions

Published online by Cambridge University Press:  17 January 2013

Gijs Nelemans
Affiliation:
Dept. Astrophysics/IMAPP, Radboud University Nijmegen, P.O.. Box 9010, 6500 GL Nijmegen, the Netherlands email: [email protected]
Silvia Toonen
Affiliation:
Dept. Astrophysics/IMAPP, Radboud University Nijmegen, P.O.. Box 9010, 6500 GL Nijmegen, the Netherlands email: [email protected]
Madelon Bours
Affiliation:
Dept. Astrophysics/IMAPP, Radboud University Nijmegen, P.O.. Box 9010, 6500 GL Nijmegen, the Netherlands email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We briefly discuss the method of population synthesis to calculate theoretical delay time distributions of Type Ia supernova progenitors. We also compare the results of different research groups and conclude that, although one of the main differences in the results for single degenerate progenitors is the retention efficiency with which accreted hydrogen is added to the white dwarf core, this alone cannot explain all the differences.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Belczynski, K., Kalogera, V., Rasio, F. A., Taam, R. E., Zezas, A., Bulik, T., Maccarone, T. J., & Ivanova, N. 2008, ApJS 174, 223CrossRefGoogle Scholar
Förster, F., Wolf, C., Podsiadlowski, P., & Han, Z. 2006, MNRAS 368, 1893CrossRefGoogle Scholar
Hachisu, I., Kato, M., & Nomoto, K. 2008, ApJ 683, L127Google Scholar
Han, Z. 1998, MNRAS 296, 1019Google Scholar
Han, Z. 2008, ApJ 677, L109CrossRefGoogle Scholar
Han, Z. & Podsiadlowski, P. 2004, MNRAS 350, 1301Google Scholar
Iben, I. Jr. & Tutukov, A. V. 1996, ApJS 105, 145Google Scholar
Kroupa, P., Tout, C. A., & Gilmore, G. 1993, MNRAS 262, 545Google Scholar
Maoz, D., Mannucci, F., Li, W., Filippenko, A. V., Della Valle, M., & Panagia, N. 2010, MNRAS 412, 1508CrossRefGoogle Scholar
Mennekens, N., Vanbeveren, D., De Greve, J. P. & De Donder, E. 2010, A&A 515, 89Google Scholar
Nelemans, G., Yungelson, L. R., Portegies Zwart, S. F., & Verbunt, F. 2001, A&A 365, 491Google Scholar
Portegies Zwart, S. F. & Verbunt, F. 1996, A&A 309, 179Google Scholar
Postnov, K. A. & Yungelson, L. R. 2006, Living Reviews in Relativity 9, 6Google Scholar
Prialnik, D. & Kovetz, A. 1995, ApJ 445, 789Google Scholar
Ruiter, A. J., Belczynski, K., & Fryer, C. 2009, ApJ 699, 2026Google Scholar
Wang, B., Li, X., & Han, Z. 2010, MNRAS 401, 2729CrossRefGoogle Scholar
Wang, B., Meng, X., Chen, X., & Han, Z. 2009, MNRAS 395, 847Google Scholar
Webbink, R. F. 1984, ApJ 277, 355Google Scholar
Whelan, J. & Iben, I. J. 1973, ApJ 186, 1007Google Scholar
Yungelson, L. R. 2005, in Sion, E. M., Vennes, S., & Shipman, H. L. (eds.), White dwarfs: cosmological and galactic probes, Vol. 332 of Astrophysics and Space Science Library, Astrophysics and Space Science Library, pp 163173Google Scholar
Yungelson, L. R. 2010, Astronomy Letters 36, 780Google Scholar
Yungelson, L. R. & Livio, M. 1998, ApJ 497, 168Google Scholar
Yungelson, L. R. & Livio, M. 2000, ApJ 528, 108Google Scholar