Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T05:05:12.341Z Has data issue: false hasContentIssue false

TeV observations of the Galactic center and starburst galaxies

Published online by Cambridge University Press:  22 May 2014

Mathieu de Naurois*
Affiliation:
Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The vicinity of the Galactic center harbors many potential accelerators of cosmic rays (CR) that could shine in very-high-energy (VHE) γ-rays, such as pulsar wind nebulae, supernova remnants, binary systems and the central black hole Sgr A*, and is characterized by high gas density, large magnetic fields and a high rate of starburst activity similar to that observed in the core of starburst galaxies. In addition to these astrophysical sources, annihilation of putative WIMPs concentrated in the gravitational well could lead to significant high-energy emission at the Galactic center. The Galactic center region has been observed by atmospheric Cherenkov telescopes, and in particular by the H. E. S. S. array in Namibia for the last ten years above 150 GeV. This large data set, comprising more than 200 hours of observations, led to the discovery of a point-like source spatially compatible with the supermassive black hole Sgr A*, and to an extended diffuse emission, correlated with molecular clouds and attributed to the interaction of cosmic rays with the interstellar medium. Over the same time period, two starburst galaxies, namely M 82 and NGC 253, were detected at TeV energies after very deep exposures. Results from these ten years of observations of the Galactic center region and starburst galaxies at TeV energies are presented, and implications for the various very-high-energy emission mechanisms are discussed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Abdo, A. A., et al. 2010, ApJ 709, L152Google Scholar
Aharonian, F. and Neronov, A. 2005, Ap&SS 300, 255Google Scholar
Akyuz, A., et al. 1991, A&A 248, 419Google Scholar
Albert, J., et al. 2006, ApJ Lett. 638, L101Google Scholar
Albert, J., et al. 2008, ApJ 674, 1037Google Scholar
Atoyan, A. and Dermer, C. D. 2004, ApJ 617, L123CrossRefGoogle Scholar
Aschenbach, B., et al. 2004, A&A 417, 71Google Scholar
Beilicke, M., for the VERITAS Collaboration 2011, Fermi Symposium proceedings - eConf C110509Google Scholar
Beilicke, M., for the VERITAS Collaboration 2012, 3rd Roma International Conference on Astroparticle PhysicsGoogle Scholar
Baganoff, F., et al. 2001, Nature 413, 45Google Scholar
Bringmann, T., et al. 2012, JCAP 7, 54Google Scholar
Chernyakova, M., et al. 2010, Proc. of the 8th INTEGRAL Workshop, DublinGoogle Scholar
Crocker, R. M., et al. 2005, ApJ 622, 892Google Scholar
Crocker, R. M. 2011, Proceedings IAU Symposium No. 284Google Scholar
Crocker, R. M., et al. 2011, MNRAS 413, 763CrossRefGoogle Scholar
Crocker, R. M., et al. 2011, MNRAS 411, 11Google Scholar
Dalcanton, J. J., et al. 2009, ApJS 183, 67Google Scholar
Engelbracht, C. W., et al. 1998, ApJ 505, 639Google Scholar
Ferrière, K., et al. 2007, A&A 467, 611Google Scholar
Förster Schreiber, N. M., et al. 2003, ApJ 599, 193Google Scholar
H. E. S. S. collaboration, Abramowski, A., et al. 2012, ApJ 757, 158Google Scholar
H. E. S. S. collaboration, Acero, F., et al. 2009, Science 326, 10801082Google Scholar
H. E. S. S. collaboration, Acero, F., et al. 2010, MNRAS 402, 18771882Google Scholar
H. E. S. S. collaboration, Aharonian, F., et al. 2004, A&A 425, L13L17Google Scholar
H. E. S. S. collaboration, Aharonian, F., et al. 2006, Nature 439, 695698Google Scholar
H. E. S. S. collaboration, Aharonian, F., et al. 2006, A&A 457, 899915Google Scholar
H. E. S. S. collaboration, Aharonian, F., et al. 2008, A&A 492 L25L28Google Scholar
H. E. S. S. collaboration, Aharonian, F.et al. 2009, A&A 503, 817825Google Scholar
Figer, D. F., et al. 2004, ApJ 601, 319Google Scholar
Hinton, J. A. and Aharonian, F. A. 2007, ApJ 657, 302Google Scholar
Hinton, J. A. and Hofmann, W. 2010, ARAA 47, 523CrossRefGoogle Scholar
Holder, J., et al. 2006, Astropart. Phys. 25, 391Google Scholar
Karlsson, N.for the VERITAS Collaboration 2009, Fermi SymposiumGoogle Scholar
Kendrew, S., et al. 2012, ApJ 755, 71Google Scholar
Kendrew, S., et al. 2013, ApJ 775, 50Google Scholar
Kosack, K., et al. 2004, ApJ 608, L97Google Scholar
Kosack, K., et al. 2013, These proceedingsGoogle Scholar
Lacki, B. C., et al. 2011, ApJ 734, 107Google Scholar
Lacki, B. C. 2013, ApJ Lett. submittedGoogle Scholar
LaRosa, T., et al. 2000, AJ 119, 207Google Scholar
Liu, S., et al. 2006, ApJ 647, 1099Google Scholar
Melia, F. and Falcke, H.ARAA 39, 309Google Scholar
Melo, V. P., et al. 2002, ApJ 574, 709Google Scholar
Morris, M. and Serabyn, E. 1996, ARAA 34, 645CrossRefGoogle Scholar
Paglione, T. A. D., et al. 1996, ApJ 460, 295Google Scholar
Reid, M. J., et al. 1999, ApJ 524, 816CrossRefGoogle Scholar
Sakai, S., et al. 1999, ApJ 526, 599CrossRefGoogle Scholar
Tsuboi, M., et al. 1999, ApJS 120, 1CrossRefGoogle Scholar
Tsuchiya, K., et al. 2004, ApJ Lett. 606, L115L118Google Scholar
VERITAS Collaboration, Acciari, V. A., et al. 2009, Nature 472, 770772Google Scholar
Viana, A. and Moulin, E., for the H. E. S. S. collaboration 2013, Proc. of the 33rd ICRC conference, Rio de JaneiroGoogle Scholar
Volk, H. J., et al. 1989, A&A 213, L12Google Scholar
Wang, Q. D., et al. 2006, MNRAS 367, 937Google Scholar
Weniger, C. 2012, JCAP 8, 07CrossRefGoogle Scholar
Wommer, E., et al. 2008, MNRAS 387, 987Google Scholar
Yusef-Zadeh, F., et al. 2005, eprint arXiv:astro-ph/0501316Google Scholar
Yusef-Zadeh, F., et al. 2007, ApJ 656, 847Google Scholar
Yusef-Zadeh, F., et al. 2013, ApJ Lett. 767, L32Google Scholar