Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T15:48:11.988Z Has data issue: false hasContentIssue false

Testing planet formation theories with giant stars

Published online by Cambridge University Press:  01 October 2007

Luca Pasquini
Affiliation:
ESO Garching, Germany email: [email protected], [email protected]
M.P. Döllinger
Affiliation:
ESO Garching, Germany email: [email protected], [email protected]
A. Hatzes
Affiliation:
Thüringer Landessternwarte Tautemburg, Germany email: [email protected]
J. Setiawan
Affiliation:
MPiA Heidelberg, Germany email: [email protected]
L. Girardi
Affiliation:
INAF-OaPD Padova, Italy email: [email protected]
L. da Silva
Affiliation:
ON Rio de Janeiro, Brazil email: [email protected]
J. R. de Medeiros
Affiliation:
UFRN Natal, Brazil email: [email protected]
A. Weiss
Affiliation:
MPA Garching, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Planet searches around evolved giant stars are bringing new insights to planet formation theories by virtue of the broader stellar mass range of the host stars compared to the solar-type stars that have been the subject of most current planet searches programs. These searches among giant stars are producing extremely interesting results. Contrary to main sequence stars planet-hosting giants do not show a tendency of being more metal rich. Even if limited, the statistics also suggest a higher frequency of giant planets (at least 10%) that are more massive compared to solar-type main sequence stars.

The interpretation of these results is not straightforward. We propose that the lack of a metallicity-planet connection among giant stars is due to pollution of the star while on the main sequence, followed by dillution during the giant phase. We also suggest that the higher mass and frequency of the planets are due to the higher stellar mass. Even if these results do not favor a specific formation scenario, they suggest that planetary formation might be more complex than what has been proposed so far, perhaps with two mechanisms at work and one or the other dominating according to the stellar mass. We finally stress as the detailed study of the host stars and of the parent sample is essential to derive firm conclusions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Biazzo, K. et al. 2007a, AN 328, 938Google Scholar
Biazzo, K., Pasquini, L. et al. 2007b, A&A 475, 981Google Scholar
Boss, A. P. 1997, Science, 276, 1836CrossRefGoogle Scholar
da Silva, L., Girardi, L., et al. 2006, A&A 458, 603Google Scholar
Döllinger., M. P., et al. 2007a: A&A, 472, 649Google Scholar
Döllinger., M. P., et al. 2007b: A&A, in preparationGoogle Scholar
Döllinger., M. P., et al. 2007c: A&A, in preparationGoogle Scholar
Ecuvillon, A., Israelian, G., et al. 2006, A&A, 449, 809Google Scholar
Fischer, D., & Valenti, J. 2005, ApJ, 622, 1102CrossRefGoogle Scholar
Frandsen, S., Carrier, F., Aerts, C. et al. 2002, A&A, 394, L5%.Google Scholar
Gonzalez, G. 1997, MNRAS, 285, 403CrossRefGoogle Scholar
Gonzalez, G. 1998, A&A, 334, 221Google Scholar
Gonzalez, G., Laws, C. et al. 2001, AJ, 121, 432CrossRefGoogle Scholar
Gray, D.Johnes, H., 1991 PASP 103, 409CrossRefGoogle Scholar
Hatzes, A. P., Cochran, W. D. 1993, ApJ, 413, 339CrossRefGoogle Scholar
Hatzes, A. P., Cochran, W. D. 1994, ApJ, 422, 366CrossRefGoogle Scholar
Hekker, Melendez 2007 astro-ph 07091145Google Scholar
Ida, S., & Lin, D. N. C. 2004, ApJ, 616, 567CrossRefGoogle Scholar
Johnson, J. et al. 2007a ApJ 665, 785CrossRefGoogle Scholar
Johnson, J. et al. 2007b ArXiv 0707.0518Google Scholar
Jørgensen, B.R., Lindegren, L. 2005, A&A, 436, 127Google Scholar
Laughlin, G., & Adams, F. C. 1997, ApJ, 491, L51CrossRefGoogle Scholar
Lovis, C., Mayor, M. 2007 A&A 472, 657Google Scholar
Matsuo, T., et al. 2007, ApJ, in press (astro-ph 0703237)Google Scholar
Mayor, M., & Queloz, D. 1995, Nature, 378, 355CrossRefGoogle Scholar
Murray, N., Chaboyer, B. 2001, ApJ 555, 801CrossRefGoogle Scholar
Pasquini, L., Randich, S. et al. 2004, A&A 424, 951Google Scholar
Pasquini, L., Döllinger, M.Weiss, A. et al. 2007, A&A 473, 979Google Scholar
Paulson, D.B., Cochran, B., Hatzes, A.P. 2004, AJ 127, 3579CrossRefGoogle Scholar
Pollack, J. B., Hubickyj, O., et al. 1996, Icarus, 124, 62CrossRefGoogle Scholar
Sadakane, K., Ohnishi, T., Ohkubo, M., Takeda, Y. 2005, PASJ 57, 127CrossRefGoogle Scholar
Santos, N. C., Israelian, G., Mayor, M. 2000, A&A, 363, 228Google Scholar
Santos, N. C., Israelian, G., Mayor, M. 2001, A&A, 373, 1019Google Scholar
Santos, N. C., Israelian, , et al. 2003, A&A, 398, 363Google Scholar
Santos, N. C., Israelian, G., Mayor, M. 2004, A&A, 415, 1153Google Scholar
Santos, N. C., Israelian, G., et al. 2005, A&A, 437, 1127Google Scholar
Sato, B., Ando, H., Kambe, E. 2003, ApJ, 597, L157CrossRefGoogle Scholar
Sato, B., Izumiura, H., et al. 2007, ApJ, 661, 527CrossRefGoogle Scholar
Schuler, S., Kim, J.H. et al. 2005, ApJ, 632, L131CrossRefGoogle Scholar
Setiawan, J., Hatzes, A.P., et al. 2003a, A&A, 398, L19Google Scholar
Setiawan, J., Pasquini, L., et al. 2003b, A&A, 397, 1151Google Scholar
Setiawan, J., Pasquini, L., et al. 2004, A&A 421, 241Google Scholar
Setiawan, J., Rodman, J., et al. 2005, A&A, 437, L31Google Scholar
Vauclair, S. 2004, ApJ 605, 874CrossRefGoogle Scholar
Walker, G.A.H., Yang, S., Campbell, B., Irwin, A.W. 1989, ApJ, 343, L21.CrossRefGoogle Scholar