Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T17:44:29.012Z Has data issue: false hasContentIssue false

Testing and Improving the Dynamical Theory of Mass Exchange

Published online by Cambridge University Press:  12 July 2007

Dmitry Bisikalo
Affiliation:
Institute of Astronomy of the Russian Academy of Sciences, Moscow, Russia email: [email protected]
Takuya Matsuda
Affiliation:
Department of Earth and Planetary Sciences, Kobe University, Kobe, Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The study of the flow structure is of great importance, and the results can be used both for consideration of the evolutionary status of binary stars and for the interpretation of observational data. In this report we present the review of 3D gas dynamic models used for the description of the mass exchange in close binaries.

Main features of the flow structure in steady-state close binaries are summarized. It is shown that in self-consistent considerations the interaction between the stream from the inner Lagrangian point and the forming accretion disk is shock-free, and, hence, a “hot spot” does not form at the outer edge of the disk. To explain the presence of the observed zones of high luminosity in close binaries a self-consistent “hot line” model was proposed according to which the excess energy is released in a shock wave formed due to interaction between the circumdisk halo and the stream. The “hot line” model was confronted with observations and confirmed by virtue of comparison of synthetic and observational light curves for cataclysmic variables and by the analysis of Doppler tomograms.

The special attention is paid to the physics of accretion disks in binary systems and particularly to waves in disks. The possible observational manifestations of the “hot line” wave and two arms of the tidal shocks are discussed. We also suggest that an additional spiral density wave can exist in inner parts of the cold accretion disk. This spiral wave is due to the retrograde precession of flow lines in the binary system. The results of 3D gas dynamic simulation have shown that a considerable increase in the accretion rate (by an order of magnitude) is associated with the formation of the “precessional” spiral wave. Based on this fact we suggest a new mechanism for the superoutbursts and superhumps in close binaries.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Armitage, P.J. & Livio, M. 1996, ApJ 470, 1024 Google Scholar
Bisikalo, D.V., Boyarchuk, A.A., Chechetkin, V.M., Kuznetsov, O.A., & Molteni, D. 1998a, MNRAS, 300, 39 CrossRefGoogle Scholar
Bisikalo, D.V., Boyarchuk, A.A., Kuznetsov, O.A., Khruzina, T.S., & Cherepashchuk, A.M. 1998b, Astron. Rep. 42, 33 Google Scholar
Bisikalo, D.V., Boyarchuk, A.A., Kuznetsov, O.A., & Chechetkin, V.M. 1999a, Astron. Rep. 43, 229 Google Scholar
Bisikalo, D.V., Boyarchuk, A.A., Chechetkin, V.M., Kuznetsov, O.A., & Molteni, D. 1999b, Astron. Rep. 43, 797 Google Scholar
Bisikalo, D.V., Harmanec, P., Boyarchuk, A.A., Kuznetsov, O.A., & Hadrava, P. 2000a, A&A 353, 1009 Google Scholar
Bisikalo, D.V., Boyarchuk, A.A., Kuznetsov, O.A., & Chechetkin, V.M. 2000a, Astron. Rep. 44, 26 CrossRefGoogle Scholar
Bisikalo, D.V., Boyarchuk, A.A., Kilpio, A.A., Kuznetsov, O.A., & Chechetkin, V.M. 2001, Astron. Rep. 45, 611 Google Scholar
Bisikalo, D.V., Boyarchuk, A.A., Kaigorodov, P.V., & Kuznetsov, O.A. 2003, Astron. Rep. 47, 809 CrossRefGoogle Scholar
Bisikalo, D.V., Boyarchuk, A.A., Kaigorodov, P.V., Kuznetsov, O.A. & Matsuda, T 2004a, Astron. Rep. 48, 449 CrossRefGoogle Scholar
Bisikalo, D.V., Boyarchuk, A.A., Kaigorodov, P.V., Kuznetsov, O.A. & Matsuda, T 2004b, Astron. Rep. 48, 588 CrossRefGoogle Scholar
Bisikalo, D.V. 2005, Ap&SS 296, 391 Google Scholar
Bisikalo, D.V., Kaigorodov, P.V., Boyarchuk, A.A., & Kuznetsov, O.A. 2005, Astron. Rep. 49, 701 CrossRefGoogle Scholar
Bisikalo, D.V., Boyarchuk, A.A., Kaigorodov, P.V., Kuznetsov, O.A. & Matsuda, T 2006, Chin. J. Astron. Astrophys., vol. 6, p. 159 CrossRefGoogle Scholar
Boyarchuk, A.A., Bisikalo, D.V., Kuznetsov, O.A., & Chechetkin, V.M. 2002, Mass transfer in close binary stars, Taylor and Francis, London Google Scholar
Fridman, A. M., Boyarchuk, A. A., Bisikalo, D. V., Kuznetsov, O. A., Khoruzhii, O. V., Torgashin, Yu. M., & Kilpio, A.A. 2003, Phys. Lett. A 317, 181 CrossRefGoogle Scholar
Froning, C.S., Long, K.S., & Knigge, C. 2003, ApJ 584, 433 Google Scholar
Gorbatskii, V.G. 1967, Astrofisica 3, 245 Google Scholar
Hirose, M., Osaki, Y., & Mineshige, S. 1991, Publ. Astron. Soc. Japan, vol. 43, p. 809 Google Scholar
Harmanec, P., Bisikalo, D. V., Boyarchuk, A. A., & Kuznetsov, O.A. 2002, A&A. 396, 937 Google Scholar
Kaigorodov, P.V., Bisikalo, D.V., Kuznetsov, O.A., & Boyarchuk, A.A. 2006, Astron. Rep. 50, 537 Google Scholar
Khruzina, T.S., Cherepashchuk, A.M., Bisikalo, D.V., Boyarchuk, A.A. & Kuznetsov, O.A. 2001, Astron. Rep. 45, 538 CrossRefGoogle Scholar
Khruzina, T.S., Cherepashchuk, A.M., Bisikalo, D.V., Boyarchuk, A.A. & Kuznetsov, O.A. 2003a, Astron. Rep. 47, 621 CrossRefGoogle Scholar
Khruzina, T.S., Cherepashchuk, A.M., Bisikalo, D.V., Boyarchuk, A.A. & Kuznetsov, O.A. 2003a, Astron. Rep. 47, 848 Google Scholar
Khruzina, T.S., Cherepashchuk, A.M., Bisikalo, D.V., Boyarchuk, A.A. & Kuznetsov, O.A. 2005, Astron. Rep. 49, 79 Google Scholar
Kuznetsov, O.A., Bisikalo, D.V., Boyarchuk, A.A., Khruzina, T.S., & Cherepashchuk, A.M. 2001, Astron. Rep. 45, 872 Google Scholar
Mason, K.O., Drew, J.E., & Knigge, C. 1997, MNRAS 290, L23 Google Scholar
Molteni, D., Belvedere, G., & Lanzafame, G. 1991, MNRAS, 249, 748 CrossRefGoogle Scholar
Molteni, D., Kuznetsov, O. A., Bisikalo, D. V., & Boyarchuk, A.A. 2001, MNRAS 327, 1103 Google Scholar
Morales-Rueda, L., Marsh, T. R., & Billington, I. 2000, MNRAS 313, 454 Google Scholar
Nagasawa, M., Matsuda, T., & Kuwahara, K. 1991, Numer. Astrophys. in Japan, vol. 2, p. 27 Google Scholar
Retter, A., Hellier, C., Augusteijn, T. et al. ., 2003, MNRAS 340, 679 CrossRefGoogle Scholar
Sawada, K., Matsuda, T., & Hachisu, I. 1986, MNRAS 219, 75 Google Scholar
Smak, J. 1970, AcA 20, 312 Google Scholar
Struve, O. 1941, ApJ 93, 104 Google Scholar
Warner, B. 1995, Cataclysmic Variable Stars, Cambridge University Press, Cambridge Google Scholar
Wolf, S., Barwig, H., Bobinger, A. et al. ., 1998, A&A 332, 984 Google Scholar