Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T18:16:29.730Z Has data issue: false hasContentIssue false

Temperature of Source Regions of 3He-Rich Impulsive Solar Energetic Particle Events

Published online by Cambridge University Press:  24 July 2018

N.-H. Chen
Affiliation:
Korea Astronomy and Space Science Institute, Daejeon, Republic of Korea email: [email protected]
R. Bučík
Affiliation:
Institut für Astrophysik, Georg-August-Universität Göttingen, Göttingen, Germany Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
R.-S. Kim
Affiliation:
Korea Astronomy and Space Science Institute, Daejeon, Republic of Korea email: [email protected] University of Science and Technology, Daejeon, Republic of Korea
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Impulsive solar energetic particle (SEP) events originate from the energy dissipation process in small solar flares. Anomalous abundances in impulsive SEP events provide an evidence on unique, yet unclear, acceleration mechanism. The pattern of heavy-ion enhancements indicates that the temperature of the source plasma that is accelerated is low and not flare-like. We examine the solar source of the 3He-rich SEP event of 2012 November 20 using Solar Dynamics Observatory (SDO)/ Atmospheric Imaging Assembly (AIA) images and investigate its thermal variation. The examined event is associated with recurrent coronal jets. The Differential Emission Measure (DEM) analysis is applied to study the temperature evolution/distribution of the source regions. Preliminary results show that the temperature of the associated solar source is ranged between 1.2-3.1 MK.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Aschwanden, M. J., Boerner, P., Schrijver, C. J. & Malanushenko, A. 2013 Solar Phys., 283 5ACrossRefGoogle Scholar
Bučík, R., Innes, D. E., Mall, U., Korth, A., Mason, G. M. & Gómez-Herrero, R. 2014 ApJ, 786, 71BCrossRefGoogle Scholar
Chen, N.-H., Ip, W.-H. & Innes, D. 2013 ApJ, 769 96CCrossRefGoogle Scholar
Chen, N.-H, Bučík, R., Innes, D. E. & Mason, G. M. 2015, A&A, 580A 16CGoogle Scholar
DiFabio, R., Guo, Z., Möbius, E., Klecker, B., Kucharek, H., Mason, G. M. & Popecki, M. 2008, ApJ, 687, 623CrossRefGoogle Scholar
Mason, G. M., Nitta, N. V., Wiedenbeck, M. E. & Innes, D. E. 2016, ApJ, 823 138CrossRefGoogle Scholar
Mason, G. M., Mazur, J. E. & Dwyer, J. R. 2002, ApJ, 565, L51CrossRefGoogle Scholar
Reames, D. V., Cliver, E. W. & Kahler, S. W. 2014, Solar Phys., 289, 38173841CrossRefGoogle Scholar
Reames, D. V., Cliver, E. W. & Kahler, S. W. 2015a, Solar Phys., 290, 17611774CrossRefGoogle Scholar
Reames, D. V. 2015b, Space Sci. Rev., 194, 202CrossRefGoogle Scholar