Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T03:34:07.962Z Has data issue: false hasContentIssue false

Synchrotron outbursts in Galactic and extragalactic jets, any difference?

Published online by Cambridge University Press:  01 August 2006

Marc Türler
Affiliation:
INTEGRAL Science Data Centre, ch. d'Ecogia 16, 1290 Versoix, Switzerland email: [email protected] Geneva Observatory, University of Geneva, ch. des Maillettes 51, 1290 Sauverny, Switzerland
Elina J. Lindfors
Affiliation:
Tuorla Observatory, Väisälä Institute of Space Physics and Astronomy, University of Turku, 21500 Piikkiö, Finland Metsähovi Radio Observatory, Helsinki University of Technology, 02540 Kylmälä, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss differences and similarities between jets powered by super-massive black holes in quasars and by stellar-mass black holes in microquasars. The comparison is based on multi-wavelength radio-to-infrared observations of the two active galactic nuclei 3C 273 and 3C 279, as well as the two galactic binaries GRS 1915+105 and Cyg X-3. The physical properties of the jet are derived by fitting the parameters of a shock-in-jet model simultaneously to all available observations. We show that the variable jet emission of galactic sources is, at least during some epochs, very similar to that of extragalactic jets. As for quasars, their observed variability pattern can be well reproduced by the emission of a series of self-similar shock waves propagating down the jet and producing synchrotron outbursts. This suggests that the physical properties of relativistic jets is independent of the mass of the black hole.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Björnsson, C.-I. & Aslaksen, T. 2000, ApJ, 533, 787Google Scholar
Fender, R. P. 2003, MNRAS, 340, 1353CrossRefGoogle Scholar
Fender, R. P., BellBurnell, S. J. Burnell, S. J., Waltman, E. B., Pooley, G. G., Ghigo, F. D. & Foster, R. S. 1997, MNRAS, 288, 849Google Scholar
Granot, J. & Sari, R. 2002, ApJ, 568, 820Google Scholar
Greiner, J., Cuby, J. G. & McCaughrean, M. J. 2001, Nature, 414, 522Google Scholar
Jorstad, S. G., Marscher, A. P., Lister, M. L., Stirling, A. M., Cawthorne, T. V., Gómez, J.-L. & Gear, W. K. 2004, AJ, 127, 3115Google Scholar
Kaiser, C. R., Sunyaev, R. & Spruit, H. C. 2000, A&A, 356, 975Google Scholar
Lindfors, E. J., Türler, M., Valtaoja, E., Aller, H., Aller, M., Mazin, D. et al. 2006, A&A, 456, 895Google Scholar
Marscher, A. P. 1987, in: Zensus, J. A.Pearson, T. J. (eds.), Superluminal Radio Sources (Cambridge Uversity Press: Cambridge), p. 280Google Scholar
Marscher, A. P. & Gear, W. K. 1985, ApJ, 298, 114CrossRefGoogle Scholar
Marscher, A. P., Gear, W. K. & Travis, J. P. 1992, in: Valtaoja, E., Valtonen, M. (eds.), Variability of Blazars (Cambridge University Press: Cambridge), p. 85Google Scholar
Mioduszewski, A. J., Rupen, M. P., Hjellming, R. M., Pooley, G. G. & Waltman, E. B. 2001, ApJ, 553, 766CrossRefGoogle Scholar
Mirabel, I. F., Dhawan, V., Chaty, S., Rodríguez, L. F., Martí, J. et al. 1998, ApJ 330, L9Google Scholar
Mirabel, I. F. & Rodríguez, L. F. 1998, Nature, 392, 673Google Scholar
Paltani, S. & Türler, M. 2005, A&A, 435, 811Google Scholar
Savolainen, T., Wiik, K., Valtaoja, E. & Tornikoski, M. 2006, A&A, 446, 71Google Scholar
Stark, M. J. & Saia, M. 2003, ApJ, 587, L101Google Scholar
Türler, M., Courvoisier, T. J.-L., Chaty, S. & Fuchs, Y. 2004, A&A, 415, L35Google Scholar
Türler, M., Courvoisier, T. J.-L. & Paltani, S. 1999, A&A, 349, 45Google Scholar
Türler, M., Courvoisier, T. J.-L. & Paltani, S. 2000, A&A, 361, 850Google Scholar
Wang, J.-M., Luo, B. & Ho, L. C. 2004, ApJ, 615, L9Google Scholar