Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T15:56:23.414Z Has data issue: false hasContentIssue false

Symmetric Four-mass Schubart-like Systems

Published online by Cambridge University Press:  05 January 2015

Winston L. Sweatman*
Affiliation:
Institute of Natural and Mathematical Sciences, Massey University, Albany, Auckland, New Zealand email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The general four-body problem can be simplified by considering the special case where the system contains two pairs of identical masses and is symmetrical. The simple models that occur may aid our understanding of the general problem. Systems that arise from Schubart-like interplay orbits are an important feature of the dynamics.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Hénon, M. 1976, Cel. Mech. Dyn. Astron., 13, 267CrossRefGoogle Scholar
Hénon, M. 1977, Cel. Mech. Dyn. Astron., 15, 243CrossRefGoogle Scholar
Hietarinta, J. & Mikkola, S. 1993, Chaos, 3, 183Google ScholarPubMed
Mikkola, S. & Hietarinta, J. 1991, Cel. Mech. Dyn. Astron., 51, 379CrossRefGoogle Scholar
Roy, A. E. & Steves, B. A. 1998, Planet. Space Sci., 46, 1475CrossRefGoogle Scholar
Roy, A. E. & Steves, B. A. 2001, Cel. Mech. Dyn. Astron., 78, 299CrossRefGoogle Scholar
Schubart, J. 1956, Astron. Nachr., 283, 17CrossRefGoogle Scholar
Sekiguchi, M. & Tanikawa, K. 2004, PASJ, 56, 235CrossRefGoogle Scholar
Sivasankaran, A., Steves, B. A., & Sweatman, W. L. 2010, Cel. Mech. Dyn. Astron., 107, 157CrossRefGoogle Scholar
Steves, B. A. & Roy, A. E. 1998, Planet. Space Sci., 46, 1465CrossRefGoogle Scholar
Sweatman, W. L. 2002, Cel. Mech. Dyn. Astron., 82, 179CrossRefGoogle Scholar
Sweatman, W. L. 2006, Cel. Mech. Dyn. Astron., 94, 37CrossRefGoogle Scholar
Sweatman, W. L. 2015, Symmetric four-body problems, in: Cojocaru, M., Kotsireas, I. S., Makarov, R. N., Melnik, R. & Shodiev, H. (eds.), Interdisciplinary Topics in Applied Mathematics, Modeling, and Computational Science, Springer Proceedings in Mathematics and Statistics, Volume 117, in pressGoogle Scholar