Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T11:34:48.120Z Has data issue: false hasContentIssue false

Surface evolution in stable magnetic fields: the case of the fully convective dwarf V374 Peg

Published online by Cambridge University Press:  26 August 2011

K. Vida
Affiliation:
Konkoly Observatory of the Hungarian Academy of Sciences H-1121 Budapest, Konkoly Thege Miklós str. 15-17. email: [email protected]
K. Oláh
Affiliation:
Konkoly Observatory of the Hungarian Academy of Sciences H-1121 Budapest, Konkoly Thege Miklós str. 15-17. email: [email protected]
Zs. Kővári
Affiliation:
Konkoly Observatory of the Hungarian Academy of Sciences H-1121 Budapest, Konkoly Thege Miklós str. 15-17. email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present BV(RI)C photometric measurements of the dM4-type V374 Peg covering ~430 days. The star has a mass of ~0.28MSun, so it is supposed to be fully convective. Previous observations detected almost-rigid-body rotation and stable, axisymmetric poloidal magnetic field. Our photometric data agree well with this picture, one persistent active nest is found on the stellar surface. Nevertheless, the surface is not static: night-to-night variations and frequent flaring are observed. The flares seem to be concentrated on the brighter part of the surface. The short-time changes of the light curve could indicate emerging flux ropes in the same region, resembling to the active nests on the Sun. We have observed flaring and quiet states of V374 Peg changing on monthly timescale.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Babcock, H. W. 1961, Astrophys. J., 133, 572CrossRefGoogle Scholar
Bade, N., et al. 1998, Astron. AstrophysSuppl., 127, 145Google Scholar
Batyrshinova, V. M. & Ibragimov, M. A. 2001, Astron. Lett. 27, 29CrossRefGoogle Scholar
Chabrier, G. & Baraffe, I. 1997, Astron. Astrophys, 327, 1039Google Scholar
Chabrier, G. & Küker, M. 2006, Astron. Astrophys, 446, 1027CrossRefGoogle Scholar
Clarke, D. 2002, Astron. Astrophys, 386, 763CrossRefGoogle Scholar
Delfosse, X., Forveille, T., Ségransan, D., Beuzit, J.-L., Udry, S., Perrier, C., & Mayor, M. 2000, Astron. Astrophys, 364, 217Google Scholar
Dobler, W., Stix, M., & Brandenburg, A. 2006, Astrophys. J., 638, 336CrossRefGoogle Scholar
Donati, J.-F., Forveille, T., Cameron, A. C., Barnes, J. R., Delfosse, X., Jardine, M. M., & Valenti, J. A. 2006, Science, 311, 633CrossRefGoogle Scholar
Greimel, R. & Robb, R. M. 1998, Information Bulletin on Variable Stars, 4652, 1Google Scholar
Korhonen, H., Vida, K., Husarik, M., Mahajan, S., Szczygiel, D., & Oláh, K. 2010, Astron. Nachr., 331, 772CrossRefGoogle Scholar
Küker, M. & Rüdiger, G. 2005, Astron. Nachr., 326, 265CrossRefGoogle Scholar
Leighton, R. B. 1969, Astrophys. J., 156, 1CrossRefGoogle Scholar
Morin, J., et al. 2008, Mon. Not. Roy. Astron. Soc., 384, 77CrossRefGoogle Scholar
Parker, E. N. 1955, Astrophys. J., 122, 293CrossRefGoogle Scholar
Reid, I. N., Hawley, S. L., & Gizis, J. E. 1995, Astrophys. J., 110, 1838Google Scholar
Ribárik, G., Oláh, K., & Strassmeier, K. G. 2003, Astron. Nachr., 324, 202CrossRefGoogle Scholar