Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T15:52:44.620Z Has data issue: false hasContentIssue false

Supernova abundance analysis with NLTE spectral models

Published online by Cambridge University Press:  12 October 2020

A. Jerkstrand*
Affiliation:
Max-Planck-Institute for Astrophysics, Garching, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supernovae provide environments with strong links to laboratory astrophysics. Diverse physical processes spanning from hot gas and semi-relativistic particles down to cold dusty clumps require extensive atomic data and understanding of processes across different physical regimes. The current status of modelling and analyzing supernova spectra is reviewed, with focus on recent results for diagnosing the production of oxygen and nickel.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Anderson, J. P., Dessart, L. Gutierrez, C. P., et al. 2018, Nature Astron., 2, 574CrossRefGoogle Scholar
Barklem, P. Osorio, Y., Fursa, D. V., et al. 2017, A&A, 606, A11Google Scholar
Bethe, H 1930, AdP, 397, 3, 325Google Scholar
de Jager, T., Zheng, W., Stahl, B. E., et al. 2019, MNRAS, 490, 279910.1093/mnras/stz2714CrossRefGoogle Scholar
Dessart, L. Hillier, J., & Waldman, R. 2013, MNRAS, 433, 2CrossRefGoogle Scholar
Doherty, C. Gil-Pons, P., Siess, L., et al. 2015, MNRAS, 446, 310.1093/mnras/stu2180CrossRefGoogle Scholar
Fremling, C. Ko, H., Dugas, A. et al. 2019, ApJL, 878, 110.3847/2041-8213/ab218fCrossRefGoogle Scholar
Mazzali, P. Nomoto, K. Patat, F., & Maeda, K. 2001, ApJ, 559, 2CrossRefGoogle Scholar
Jerkstrand, A. Fransson, C., & Kozma, C. 2011, A&A, 530, 45Google Scholar
Jerkstrand, A. Fransson, C., Maguire, K., et al. 2012, A&A, 546, 28Google Scholar
Jerkstrand, A., Smartt, S. J., Fraser, M., et al. 2014, MNRAS, 439, 4CrossRefGoogle Scholar
Jerkstrand, A. Ergon, M., Smartt, S.J., et al. 2015a, A&A, 573, A12Google Scholar
Jerkstrand, A., Smartt, S. J., Sollerman, J., et al. 2015b, MNRAS, 448, 3CrossRefGoogle Scholar
Jerkstrand, A., Timmes, F., Magkotsios., G., et al. 2015c, ApJ, 807, 110.1088/0004-637X/807/1/110CrossRefGoogle Scholar
Jerkstrand, A. Smartt, S.J., Inserra, C., et al. 2017, ApJ, 13, 23Google Scholar
Jerkstrand, A. 2017, Handbook of Supernovae, 795Google Scholar
Jerkstrand, A. Ertl, T., & Janka, T. 2018, MNRAS, 475, 110.1093/mnras/stx2877CrossRefGoogle Scholar
Kozma, C. & Fransson, C. 1992, ApJ, 390, 60210.1086/171311CrossRefGoogle Scholar
Lisakov, S. Dessart, L., Hillier, J., et al. 2018, MNRAS, 473, 310.1093/mnras/stx2521CrossRefGoogle Scholar
Morales-Garoffolo, A., Elias-Rosa, N., Bersten, M., et al. 2015, MNRAS, 454, 1CrossRefGoogle Scholar
Maguire, K. Sim, S. A., , Shingles, S., et al. 2018, MNRAS, 477, 3CrossRefGoogle Scholar
Nicholl, M. Berger, E., Blanchard, P., et al. 2019, ApJ, 871, 1CrossRefGoogle Scholar
Prentice, S. J., Ashall, C. James, P. A., et al. 2019, MNRAS, 485, 210.1093/mnras/sty3399CrossRefGoogle Scholar
Smartt, S. J. 2009, ARA&A, 47, 1Google Scholar
Smartt, S. J. 2015, PASA, 32, 01610.1017/pasa.2015.17CrossRefGoogle Scholar
Terreran, G. Jerkstrand, A., Benetti, S., et al. 2016 MNRAS, 462, 110.1093/mnras/stw1591CrossRefGoogle Scholar
Tomasella, L. Cappellaro, E., Pumo, M. L., et al. 2018 MNRAS, 475, 2Google Scholar