Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T16:31:57.105Z Has data issue: false hasContentIssue false

Successive filament eruptions within one solar breakout event

Published online by Cambridge University Press:  06 January 2014

Yuandeng Shen*
Affiliation:
Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming 650011, China Kwasan and Hida Observatories, Kyoto University, Kyoto 6078471, Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The magnetic breakout model has been widely used to explain solar eruptive activities. Here, we apply it to explain successive filament eruptions occurred in a quadrupolar magnetic source region. Based on the high temporal and spatial resolution, multi-wavelengths observations taken by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO), we find some signatures that support the occurrence of breakout-like external reconnection just before the start of the successive filament eruptions. Furthermore, the extrapolated three-dimensional coronal field also reveals that the magnetic topology above the quadrupolar source region resembles that of the breakout model. We propose a possible mechanism within the framework of the breakout model to interpret the successive filament eruptions, in which the so-called magnetic implosion mechanism is firstly introduced to be the physical linkage of successive filament eruptions. We conclude that the structural properties of coronal fields are important for producing successive filament eruptions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Antiochos, S. K. 1998, ApJ, 502, L181Google Scholar
Antiochos, S. K., DeVore, C. R., & Klimchuk, J. A. 1999, ApJ, 510, 485Google Scholar
Aulanier, G., DeLuca, E. E., Antiochos, K. S., McMullen, R. A., & Golub, L. 2000, ApJ, 540, 1126Google Scholar
Gilbert, H. R., Holzer, T. E., Low, B. C., & Burkepile, J. T. 2001, ApJ, 549, 1221Google Scholar
Hudson, H. S. 2000, ApJ, 531, L75Google Scholar
Jiang, Y., Shen, Y., Yi, B., Yang, J., & Wang, J. 2008, ApJ, 677, 699Google Scholar
Jiang, Y., Yang, J., Hong, J., Bi, Y., & Zheng, R., 2011, ApJ, 738, 179Google Scholar
Liu, Y., Su, J., Xu, Z., Lin, H., Shibata, K.et al. 2009, ApJ, 696, L70Google Scholar
Lynch, B. J. & Edmondson, J. K. 2013, ApJ, 764, 87Google Scholar
Maia, D., Aulanier, G., Wang, S. J., et al. 2003, A&A, 405, 313Google Scholar
Plunkett, S. P., Vourlidas, A., Šimberová, S.et al. 2000, Sol. Phys., 194, 371Google Scholar
Schrijver, C. J., Title, A. M., Yeates, A. R., & DeRosa, M. L. 2013, ApJ, 773, 93Google Scholar
Schrijver, C. J. & Title, A. M. 2011, J. Geophys. Res., 116, A04108Google Scholar
Shen, Y., Liu, Y., & Liu, R. 2011, Res. Astron. Astrophys., 11, 594CrossRefGoogle Scholar
Shen, Y., Liu, Y., & Su, J. T. 2012, ApJ, 750, 12Google Scholar
Titov, V. S., Mikic, Z., Török, T., Linker, J. A. & Panasenco, O. 2012, ApJ, 759, 70Google Scholar
Török, T., Panasenco, O., Titov, V. S., et al. 2011, ApJ, 739, L63Google Scholar