Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T03:35:21.205Z Has data issue: false hasContentIssue false

Studying stellar halos with future facilities

Published online by Cambridge University Press:  09 May 2016

Laura Greggio
Affiliation:
INAF, Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, 35122 Padova, Italy emai: [email protected], [email protected]
Renato Falomo
Affiliation:
INAF, Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, 35122 Padova, Italy emai: [email protected], [email protected]
Michela Uslenghi
Affiliation:
INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Via Bassini 15, 20133 Milano, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stellar halos around galaxies retain fundamental evidence of the processes which lead to their build up. Sophisticated models of galaxy formation in a cosmological context yield quantitative predictions about various observable characteristics, including the amount of substructure, the slope of radial mass profiles and three dimensional shapes, and the properties of the stellar populations in the halos. The comparison of such models with the observations provides constraints on the general picture of galaxy formation in the hierarchical Universe, as well as on the physical processes taking place in the halos formation. With the current observing facilities, stellar halos can be effectively probed only for a limited number of nearby galaxies. In this paper we illustrate the progress that we expect in this field with the future ground based large aperture telescopes (E-ELT) and with space based facilities as JWST.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Atkinson, A. M., Abraham, R. G., & Ferguson, A. M. N. 2013, ApJ, 765, 28CrossRefGoogle Scholar
Blom, C., Forber, D. A., Romanowsky, A. J., et al. 2014, MNRAS, 439, 2420CrossRefGoogle Scholar
Cooper, A. P., D'Souza, R., Kauffmann, G., et al. 2013, MNRAS, 434, 3348CrossRefGoogle Scholar
Deason, A. J., Belorukov, W., & Evans, N. W. 2011, MNRAS, 416, 2903CrossRefGoogle Scholar
Font, A. S., McCarthy, I. G., Crain, R. A., et al. 2013, MNRAS, 416, 2802CrossRefGoogle Scholar
Greggio, L., Rejkuba, M., Gonzales, O. A., et al. 2014, AA, 562, A73CrossRefGoogle Scholar
Hudson, M. J., Harris, G. L., & Harris, W. E. 2014, ApJ (Letters), 787, L5CrossRefGoogle Scholar
Ibata, R. A., Lewis, G. F., McConnachie, A. W., et al. 2014, ApJ, 780, 128CrossRefGoogle Scholar
Johnston, K. V., Bullock, J. S., Sharma, S., et al. 2008, ApJ, 689, 936CrossRefGoogle Scholar
Nantais, J. B., Huchra, J. P., Barmby, P., et al. 2006, AJ, 131, 1416CrossRefGoogle Scholar
Pillepich, A., Vogelsberger, M., Deason, A. J., et al. 2014, MNRAS, 444, 237CrossRefGoogle Scholar