No CrossRef data available.
Article contents
Study accretion and ejection using a new GPU-accelerated GRMHD code
Published online by Cambridge University Press: 28 October 2024
Abstract
We study disks and jets in various accretion states (SANE and MAD) using novel, GPU-accelerated general-relativistic magneto-hydrodynamic (GR-MHD) code which we developed, based on HARM. This code, written in CUDA-c and uses OpenMP to parallelize multi-GPU setups, allows high resolution simulations of accretion disks and the formation and structure of jets without the need of multi-node supercomputer infrastructure. A 2563 simulation is well within the reach of an Nvidia DGX-V100 server, with the computation being a factor about 100 times faster if only the CPU was used.
We use this code to examine several disk structures, wind and jet properties in the MAD and SANE states. In the MAD state, we find that the magnetic flux threading the horizon mostly depends on the spin of the BH. This implies that the jet structure and power are strong functions of the spin, with non-spinning BHs have the widest jets.
Keywords
- Type
- Contributed Paper
- Information
- Proceedings of the International Astronomical Union , Volume 19 , Symposium S378: Black Hole Winds at All Scales , December 2023 , pp. 112 - 116
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
- Copyright
- © The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union