Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T18:49:43.110Z Has data issue: false hasContentIssue false

Study accretion and ejection using a new GPU-accelerated GRMHD code

Published online by Cambridge University Press:  28 October 2024

Asaf Pe’er*
Affiliation:
Department of physics, Bar Ilan University, Ramat-Gan, 52900, Israel
Damien Bégué
Affiliation:
Department of physics, Bar Ilan University, Ramat-Gan, 52900, Israel
Guoqiang Zhang
Affiliation:
Department of physics, Bar Ilan University, Ramat-Gan, 52900, Israel
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study disks and jets in various accretion states (SANE and MAD) using novel, GPU-accelerated general-relativistic magneto-hydrodynamic (GR-MHD) code which we developed, based on HARM. This code, written in CUDA-c and uses OpenMP to parallelize multi-GPU setups, allows high resolution simulations of accretion disks and the formation and structure of jets without the need of multi-node supercomputer infrastructure. A 2563 simulation is well within the reach of an Nvidia DGX-V100 server, with the computation being a factor about 100 times faster if only the CPU was used.

We use this code to examine several disk structures, wind and jet properties in the MAD and SANE states. In the MAD state, we find that the magnetic flux threading the horizon mostly depends on the spin of the BH. This implies that the jet structure and power are strong functions of the spin, with non-spinning BHs have the widest jets.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abramowicz, M. A. & Fragile, P. C. 2013, Foundations of Black Hole Accretion Disk Theory. Living Reviews in Relativity, 16, 1.CrossRefGoogle ScholarPubMed
Bégué, D., Pe’er, A., Zhang, G. Q., Zhang, B. B., & Pevzner, B. 2023, cuHARM: A New GPU-accelerated GRMHD Code and Its Application to ADAF Disks. ApJS, 264(2), 32.CrossRefGoogle Scholar
Chandra, M., Foucart, F., & Gammie, C. F. 2017, grim: A Flexible, Conservative Scheme for Relativistic Fluid Theories. ApJ, 837(1), 92.CrossRefGoogle Scholar
Chatterjee, K., Liska, M., Tchekhovskoy, A., & Markoff, S. B. 2019, Accelerating AGN jets to parsec scales using general relativistic MHD simulations. MNRAS, 490(2), 22002218.CrossRefGoogle Scholar
De Villiers, J.-P., Hawley, J. F., & Krolik, J. H. 2003, Magnetically Driven Accretion Flows in the Kerr Metric. I. Models and Overall Structure. ApJ, 599(2), 12381253.CrossRefGoogle Scholar
Del Zanna, L., Zanotti, O., Bucciantini, N., & Londrillo, P. 2007, ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics. A&A, 473(1), 1130.Google Scholar
Fishbone, L. G. & Moncrief, V. 1976, Relativistic fluid disks in orbit around Kerr black holes. ApJ, 207, 962976.CrossRefGoogle Scholar
Foucart, F., Chandra, M., Gammie, C. F., Quataert, E., & Tchekhovskoy, A. 2017, How important is non-ideal physics in simulations of sub-Eddington accretion on to spinning black holes? MNRAS, 470(2), 22402252.CrossRefGoogle Scholar
Gammie, C. F., McKinney, J. C., & Tóth, G. 2003, HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics. ApJ, 589, 444457.CrossRefGoogle Scholar
Giles, M. B. & Reguly, I. 2014, Trends in high-performance computing for engineering calculations. Philosophical Transactions of the Royal Society of London Series A, 372(2022), 2013031920130319.Google ScholarPubMed
Grete, P., Glines, F. W., & O’Shea, B. W. 2021, K-Athena: a performance portable structured grid finite volume magnetohydrodynamics code. IEEE Transactions on Parallel and Distributed Systems, 32(1), 85907.CrossRefGoogle Scholar
Liska, M., Hesp, C., Tchekhovskoy, A., Ingram, A., van der Klis, M., & Markoff, S. 2018, Formation of precessing jets by tilted black hole discs in 3D general relativistic MHD simulations. MNRAS, 474(1), L81L85.CrossRefGoogle Scholar
McKinney, J. C. & Gammie, C. F. 2004, A Measurement of the Electromagnetic Luminosity of a Kerr Black Hole. ApJ, 611, 977995.CrossRefGoogle Scholar
Mizuno, Y. 2022, GRMHD Simulations and Modeling for Jet Formation and Acceleration Region in AGNs. Universe, 8(2), 85.CrossRefGoogle Scholar
Narayan, R., Igumenshchev, I. V., & Abramowicz, M. A. 2003, Magnetically Arrested Disk: an Energetically Efficient Accretion Flow. PASJ, 55, L69L72.CrossRefGoogle Scholar
Narayan, R. & McClintock, J. E. 2008, Advection-dominated accretion and the black hole event horizon. NewAR, 51(10-12), 733751.CrossRefGoogle Scholar
Narayan, R., SÄ dowski, A., Penna, R. F., & Kulkarni, A. K. 2012, GRMHD simulations of magnetized advection-dominated accretion on a non-spinning black hole: role of outflows. MNRAS, 426, 32413259.CrossRefGoogle Scholar
Noble, S. C., Gammie, C. F., McKinney, J. C., & Del Zanna, L. 2006, Primitive Variable Solvers for Conservative General Relativistic Magnetohydrodynamics. ApJ, 641, 626637.CrossRefGoogle Scholar
Porth, O., Olivares, H., Mizuno, Y., Younsi, Z., Rezzolla, L., Moscibrodzka, M., Falcke, H., & Kramer, M. 2017, The black hole accretion code. Computational Astrophysics and Cosmology, 4(1), 1.CrossRefGoogle Scholar
Stone, J. M., Gardiner, T. A., Teuben, P., Hawley, J. F., & Simon, J. B. 2008, Athena: A New Code for Astrophysical MHD. ApJS, 178(1), 137177.CrossRefGoogle Scholar
Tchekhovskoy, A., Narayan, R., & McKinney, J. C. 2011, Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. MNRAS, 418, L79L83.CrossRefGoogle Scholar
Tóth, G. 2000, The $$$$ Constraint in Shock-Capturing Magnetohydrodynamics Codes. Journal of Computational Physics, 161(2), 605652.CrossRefGoogle Scholar
Wong, G. N., Du, Y., Prather, B. S., & Gammie, C. F. 2021, The Jet-disk Boundary Layer in Black Hole Accretion. ApJ, 914(1), 55.CrossRefGoogle Scholar