Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-03T00:14:15.546Z Has data issue: false hasContentIssue false

Strong lithium lines in red supergiants at different metallicities

Published online by Cambridge University Press:  29 August 2024

Ignacio Negueruela*
Affiliation:
Departamento de Fsica Aplicada, Facultad de Ciencias, Universidad de Alicante, Carretera de San Vicente s/n, E03690, San Vicente del Raspeig, Spain
Javier Alonso-Santiago
Affiliation:
INAF–Osservatorio Astrofisico di Catania, via S. Sofia 78, 95123 Catania, Italy
Ricardo Dorda
Affiliation:
Instituto de Astrofsica de Canarias, Va Láctea s/n, E38200, La Laguna, Tenerife, Spain
Lee R. Patrick
Affiliation:
Departamento de Fsica Aplicada, Facultad de Ciencias, Universidad de Alicante, Carretera de San Vicente s/n, E03690, San Vicente del Raspeig, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Current models of stellar evolution predict that stars more massive than ∼6 M should have completely depleted all lithium (Li) in their atmospheres by the time when they reach the He core burning phase. Against this, a non-negligible number of red giants with masses ≳6 M presenting strong Li lines have recently been reported. Motivated by this finding, we have carried out a spectroscopic survey of red supergiants (RSGs) in the Perseus Arm and a selection of young open clusters in the Magellanic Clouds to assess the presence of the Li <sc>i</sc> 6708Å doublet line. Based on a sample of> 70 objects, close to one third of RSGs in the Perseus Arm display noticeable Li lines, with perhaps a trend towards a lower fraction among more luminous stars. The samples in the Magellanic Clouds are not as large, but hint at a metallicity dependence. Twenty one RSGs in 5 LMC clusters show a very high fraction of Li detection, around 40%. Conversely, 17 RSGs in 5 SMC clusters give only one secure detection. The interpretation of these observational results is not straightforward, but a mechanism for Li production seems most likely. Further characterisation work is ongoing, while theoretical studies into this matter are urgently needed.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Aguilera-Gómez, C., Chanamé, J., Pinsonneault, M. H., et al. 2016, ApJ, 829, 127 CrossRefGoogle Scholar
Anthony-Twarog, B. J., Deliyannis, C. P., & Twarog, B. A. 2021, AJ, 161, 159 CrossRefGoogle Scholar
Bensby, T. & Lind, K. 2018, A&A, 615, A151 Google Scholar
Brott, I., de Mink, S. E., Cantiello, M., et al. 2011, A&A, 530, A115 Google Scholar
de Burgos, A., Simon-Daz, S., Lennon, D. J., et al. 2020, A&A, 643, A116 Google Scholar
Cameron, A. G. W., & Fowler, W. A. 1971, ApJ, 164, 111 CrossRefGoogle Scholar
Doherty, C. L., Gil-Pons, P., Siess, L., Lattanzio, J. C., & Lau, H. H. B. 2015, MNRAS, 446, 2599 CrossRefGoogle Scholar
Dorda, R., Negueruela, I., & González-Fernández, C. 2018, MNRAS, 475, 2003 CrossRefGoogle Scholar
Ekström, S., Georgy, C., Eggenberger, P., et al. 2012, A&A, 537, A146 Google Scholar
Fanelli, C., Origlia, L., Mucciarelli, A., et al. 2022, ApJ, 931, 61 CrossRefGoogle Scholar
Garca-Hernández, D. A., Garca-Lario, P., Plez, B., et al. 2007, A&A, 462, 711 Google Scholar
Garca-Hernández, D. A., Zamora, O., Yagüe, A., et al. 2013, A&A, 555, L3 Google Scholar
Jeffries, R. D. 2006, in Chemical Abundances and Mixing in Stars in the Milky Way and its Satellites, p163.Google Scholar
Lyubimkov, L. S. 2016, Astrophysics, 59, 411 CrossRefGoogle Scholar
Lyubimkov, L. S., Lambert, D. L., Kaminsky, B. M., et al. 2012, MNRAS, 427, 11 CrossRefGoogle Scholar
Luck, R. E. 1977, ApJ, 218, 752 Google Scholar
Luck, R. E. 1994, ApJS, 91, 309 CrossRefGoogle Scholar
Mazzitelli, I., D’Antona, F., & Ventura, P. 1999, A&A, 348, 846 Google Scholar
Martell, S. L., Simpson, J. D., Balasubramaniam, A. G., et al. 2021, MNRAS, 505, 5340 Google Scholar
Negueruela, I., Alonso-Santiago, J., Tabernero, H. M., et al. 2017, MemSAIt, 88, 368 Google Scholar
Negueruela, I., Alonso-Santiago, J., Tabernero, H. M., et al. 2020, MemSAIt, 91, 114 Google Scholar
Poelarends, A. J. T., Herwig, F., Langer, N., & Heger, A. 2008, ApJ, 675, 614625 Google Scholar
Proffitt, C. R., Lennon, D. J., Langer, N., et al. 2016, ApJ, 824, 3 CrossRefGoogle Scholar
van Raai, M. A., Lugaro, M., Karakas, A. I., et al. 2012, A&A, 540, A44 Google Scholar
Randich, S., & Magrini, L., 2021, FrASS, 8, 6 Google Scholar
de la Reza, R. 2020, MemSAIt, 91, 63 Google Scholar
Twarog, B. A., Anthony-Twarog, B. J., Deliyannis, C. P., et al. 2020, MemSAIt, 91, 74 Google Scholar
Vilardell, F., Colomé, J., Sanz, J., et al. 2013, Highlights of Spanish Astrophysics VII, 958Google Scholar
Zhang, J., Shi, J.-R., Yan, H.-L., et al. 2021, ApJL, 919, L3 CrossRefGoogle Scholar
Zhou, Y., Wang, C., Yan, H., et al. 2022, ApJ, 931, 136 Google Scholar