Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T04:55:06.525Z Has data issue: false hasContentIssue false

Stellar Yields of Rotating First Stars: Yields of Weak Supernovae and Abundances of Carbon-enhanced Hyper Metal Poor Stars

Published online by Cambridge University Press:  23 January 2015

Koh Takahashi
Affiliation:
Department of Astronomy, The University of Tokyo email: [email protected]
Hideyuki Umeda
Affiliation:
Department of Astronomy, The University of Tokyo email: [email protected]
Takashi Yoshida
Affiliation:
Yukawa Institute for Theoretical Physics, Kyoto University
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The three most iron-poor stars known until now are also known to have peculiar enhancements of intermediate mass elements. Under the assumption that these iron-deficient stars reveal the nucleosynthesis result of Pop III stars, we show that a weak supernova model successfully reproduces the observed abundance patterns. Moreover, we show that the initial parameters of the progenitor, such as the initial masses and the rotational property, can be constrained by the model, since the stellar yields result from the nucleosynthesis in the outer region of the star, which is significantly affected by the initial parameters. The initial parameter of Pop III stars is of prime importance for the theoretical study of the early universe. Future observation will increase the number of such carbon enhanced iron-deficient stars, and the same analysis on the stars may give valuable information for the Pop III stars that existed in our universe.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Aoki, W., Frebel, A., Christlieb, N., et al. 2006, ApJ 639, 897Google Scholar
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A 47, 481Google Scholar
Bessell, M. S. & Christlieb, N. 2005, in Hill, V., Francois, P., & Primas, F. (eds.), From Lithium to Uranium: Elemental Tracers of Early Cosmic Evolution, Vol. 228 of IAU Symposium, pp 237–238Google Scholar
Bessell, M. S., Christlieb, N., & Gustafsson, B. 2004, ApJ (Letters) 612, L61CrossRefGoogle Scholar
Bonifacio, P., Caffau, E., Venn, K. A., & Lambert, D. L. 2012, A&A 544, A102Google Scholar
Bromm, V. & Yoshida, N. 2011, ARA&A 49, 373Google Scholar
Christlieb, N., Bessell, M. S., Beers, T. C., et al. 2002, Nature 419, 904Google Scholar
Christlieb, N., Gustafsson, B., Korn, A. J., et al. 2004, ApJ 603, 708Google Scholar
Collet, R., Asplund, M., & Trampedach, R. 2006, ApJ (Letters) 644, L121Google Scholar
Frebel, A., Aoki, W., Christlieb, N., et al. 2005, Nature 434, 871Google Scholar
Frebel, A., Christlieb, N., Norris, J. E., Aoki, W., & Asplund, M. 2006, ApJ (Letters) 638, L17CrossRefGoogle Scholar
Frebel, A., Collet, R., Eriksson, K., Christlieb, N., & Aoki, W. 2008, ApJ 684, 588Google Scholar
Hirano, S., Hosokawa, T., Yoshida, N., et al. 2014, ApJ 781, 60CrossRefGoogle Scholar
Keller, S. C., Bessell, M. S., Frebel, A., et al. 2014, Nature 506, 463CrossRefGoogle Scholar
Stacy, A., Greif, T. H., Klessen, R. S., Bromm, V., & Loeb, A. 2013, MNRAS 431, 1470Google Scholar
Steigman, G. 2007, Annual Review of Nuclear and Particle Science 57, 463Google Scholar
Takahashi, K., Umeda, H., & Yoshida, T. 2014, ArXiv e-printsGoogle Scholar
Takahashi, K., Yoshida, T., & Umeda, H. 2013, ApJ 771, 28Google Scholar
Umeda, H. & Nomoto, K. 2005, ApJ 619, 427Google Scholar