Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T02:22:30.892Z Has data issue: false hasContentIssue false

The Stellar Mass of M31 as inferred by the Andromeda Optical & Infrared Disk Survey

Published online by Cambridge University Press:  10 April 2015

Jonathan Sick
Affiliation:
Department of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, ON, CanadaK7L 3N6. email: [email protected], [email protected]
Stephane Courteau
Affiliation:
Department of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, ON, CanadaK7L 3N6. email: [email protected], [email protected]
Jean-Charles Cuillandre
Affiliation:
IRFU, Centre d'études de Saclay, [email protected]
Julianne Dalcanton
Affiliation:
Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195, USA. [email protected]
Roelof de Jong
Affiliation:
Leibniz Institut fr Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany. [email protected]
Michael McDonald
Affiliation:
Kavli Institute for Astrophysics and Space Research, MIT, Cambridge, MA, USA. [email protected]
Dana Simard
Affiliation:
Department of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, ON, CanadaK7L 3N6. email: [email protected], [email protected]
R. Brent Tully
Affiliation:
Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI, USA. [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Our proximity and external vantage point make M31 an ideal testbed for understanding the structure of spiral galaxies. The Andromeda Optical and Infrared Disk Survey (ANDROIDS) has mapped M31's bulge and disk out to R=40 kpc in ugriJKs bands with CFHT using a careful sky calibration. We use Bayesian modelling of the optical-infrared spectral energy distribution (SED) to estimate profiles of M31's stellar populations and mass along the major axis. This analysis provides evidence for inside-out disk formation and a declining metallicity gradient. M31's i-band mass-to-light ratio (M/Li*) decreases from 0.5 dex in the bulge to ~ 0.2 dex at 40 kpc. The best-constrained stellar population models use the full ugriJKs SED but are also consistent with optical-only fits. Therefore, while NIR data can be successfully modelled with modern stellar population synthesis, NIR data do not provide additional constraints in this application. Fits to the gi-SED alone yield M/Li* that are systematically lower than the full SED fit by 0.1 dex. This is still smaller than the 0.3 dex scatter amongst different relations for M/Li via g – i colour found in the literature. We advocate a stellar mass of M*(30 kpc) = 10.3+2.3-1.7 × 1010 M for the M31 bulge and disk.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Abraham, R. G. & van Dokkum, P. G. 2014, PASP, 126, 55CrossRefGoogle Scholar
Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000Google Scholar
Chemin, L., Carignan, C., & Foster, T. 2009, ApJ, 705, 1395Google Scholar
Conroy, C., Gunn, J. E., & White, M. 2009, ApJ, 699, 486CrossRefGoogle Scholar
Conroy, C., White, M., & Gunn, J. E. 2010, ApJ, 708, 58CrossRefGoogle Scholar
Courteau, S., Widrow, L. M., McDonald, M., et al. 2011, ApJ, 739, 20Google Scholar
Courteau, S., Cappellari, M., de Jong, R. S., et al. 2014, Rev. Mod. Phys., 86, 47Google Scholar
Dalcanton, J. J., Williams, B. F., Lang, D., et al. 2012, ApJS, 200, 18Google Scholar
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306CrossRefGoogle Scholar
Into, T. & Portinari, L. 2013, MNRAS, 430, 2715CrossRefGoogle Scholar
Maraston, C. 2005, MNRAS, 362, 799Google Scholar
Saglia, R. P., Fabricius, M., Bender, R., et al. 2010, A&A, 509, A61Google Scholar
Sick, J., Courteau, S., & Cuillandre, J.-C. 2013, 1310.4832Google Scholar
Sick, J., Courteau, S., Cuillandre, J.-C., et al. 2014, AJ, 147, 109Google Scholar
Spekkens, K. & Sellwood, J. A. 2007, ApJ, 664, 204Google Scholar
Tamm, A., Tempel, E., Tenjes, P., Tihhonova, O., & Tuvikene, T. 2012, A&A, 546, A4Google Scholar
Taylor, E. N., Hopkins, A. M., Baldry, I. K., et al. 2011, MNRAS, 418, 1587Google Scholar
Walterbos, R. A. M. & Kennicutt, R. C. Jr. 1987, A&AS, 69, 311Google Scholar
Zibetti, S., Charlot, S., & Rix, H. 2009, MNRAS, 400, 1181Google Scholar