Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T21:12:17.486Z Has data issue: false hasContentIssue false

Stellar mass fraction and quasar accretion disk size in SDSS J1004+4112 from photometric follow-up

Published online by Cambridge University Press:  04 March 2024

R. Forés-Toribio*
Affiliation:
Departamento de Astronoma y Astrofsica, Universidad de Valencia, E-46100 Burjassot, Valencia, Spain. Observatorio Astronómico, Universidad de Valencia, E-46980 Paterna, Valencia, Spain
J. A. Muñoz
Affiliation:
Departamento de Astronoma y Astrofsica, Universidad de Valencia, E-46100 Burjassot, Valencia, Spain. Observatorio Astronómico, Universidad de Valencia, E-46980 Paterna, Valencia, Spain
C. Fian
Affiliation:
Departamento de Astronoma y Astrofsica, Universidad de Valencia, E-46100 Burjassot, Valencia, Spain.
J. Jiménez-Vicente
Affiliation:
Departamento de Fsica Teórica y del Cosmos, Universidad de Granada, Campus de Fuentenueva, 18071 Granada, Spain Instituto Carlos I de Fsica Teórica y Computacional, Universidad de Granada, 18071 Granada, Spain
E. Mediavilla
Affiliation:
Instituto de Astrofsica de Canarias, Va Láctea S/N, La Laguna, E-38200, Tenerife, Spain Departamento de Astrofsica, Universidad de la Laguna, La Laguna, E-38200, Tenerife, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The gravitational lens SDSS J1004+4112 was the first discovered system where a background quasar is lensed by a galaxy cluster instead of a single galaxy. We use the 14.5-year r-band light curves together with the recently measured time delay of the fourth brightest quasar image (Munõz et al. (2022)) and the mass model from Forés-Toribio et al. (2022) to study the microlensing effect in this system. We constrain the quasar accretion disk size to light-days at 2407Å in the restframe which is compatible with most previous estimates. We also infer the fraction of mass in stars at the positions of the quasar images: $${\alpha _A} = 0.058_{ - 0.032}^{ + 0.024},{\alpha _B} = 0.048_{ - 0.014}^{ + 0.032},{\alpha _C} = 0.018_{ - 0.018}^{ + 0.015}$$ and $${\alpha _D} = 0.008_{ - 0.008}^{ + 0.033}$$. The stellar fraction estimates are reasonable for intracluster medium although the stellar fractions at images A and B are slightly larger, suggesting the presence of a near undetected galaxy.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Chen, B., Dai, X., Kochanek, C. S., et al. 2012, ApJ, 755, 24.CrossRefGoogle Scholar
DeMaio, T., Gonzalez, A. H., Zabludoff, A., et al. 2018, MNRAS, 474, 3009.CrossRefGoogle Scholar
Fian, C., Guerras, E., Mediavilla, E., et al. 2018, ApJ, 859, 50.CrossRefGoogle Scholar
Fian, C., Mediavilla, E., Hanslmeier, A., et al. 2016, ApJ, 830, 149.CrossRefGoogle Scholar
Fian, C., Mediavilla, E., Motta, V., et al. 2021, A&A, 653, A109.Google Scholar
Fohlmeister, J., Kochanek, C. S., Falco, E. E., et al. 2008, ApJ, 676, 761.CrossRefGoogle Scholar
Forés-Toribio, R., Muñoz, J. A., Kochanek, C. S., et al. 2022, ApJ, 937, 35.CrossRefGoogle Scholar
Gómez-Álvarez, P., Mediavilla, E., Muñoz, J. A., et al. 2006, ApJL, 645, L5.CrossRefGoogle Scholar
Henden, N. A., Puchwein, E., & Sijacki, D. 2020, MNRAS, 498, 2114.CrossRefGoogle Scholar
Hutsemékers, D., Sluse, D., Savić, D., et al. 2023, A&A, 672, A45.Google Scholar
Inada, N., Oguri, M., Pindor, B., et al. 2003, Nature, 426, 810.CrossRefGoogle Scholar
Jiménez-Vicente, J. & Mediavilla, E. 2022, ApJ, 941, 80.CrossRefGoogle Scholar
Jiménez-Vicente, J., Mediavilla, E., Kochanek, C. S., et al. 2014, ApJ, 783, 47.CrossRefGoogle Scholar
Kawano, Y. & Oguri, M. 2006, PASJ, 58, 271.CrossRefGoogle Scholar
Kravtsov, A. V., Vikhlinin, A. A., & Meshcheryakov, A. V. 2018, Astron. Lett., 44, 8.CrossRefGoogle Scholar
Lamer, G., Schwope, A., Wisotzki, L., et al. 2006, A&A, 454, 493.Google Scholar
Mosquera, A. M. & Kochanek, C. S. 2011, ApJ, 738, 96.CrossRefGoogle Scholar
Motta, V., Mediavilla, E., Falco, E., et al. 2012, ApJ, 755, 82.CrossRefGoogle Scholar
Muñoz, J. A., Kochanek, C. S., Fohlmeister, J., et al. 2022, ApJ, 937, 34.CrossRefGoogle Scholar
Oguri, M. 2010, PASJ, 62, 1017.CrossRefGoogle Scholar
Popović, L. Ć., Afanasiev, V. L., Moiseev, A., et al. 2020, A&A, 634, A27.Google Scholar
Richards, G. T., Keeton, C. R., Pindor, B., et al. 2004, ApJ, 610, 679.CrossRefGoogle Scholar
Ross, N. R., Assef, R. J., Kochanek, C. S., et al. 2009, ApJ, 702, 472. CrossRefGoogle Scholar