Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T16:31:53.803Z Has data issue: false hasContentIssue false

Stellar flares and the dark energy of CMEs

Published online by Cambridge University Press:  09 September 2016

Jeremy J. Drake
Affiliation:
Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge MA02138, USA email: [email protected]
Ofer Cohen
Affiliation:
Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge MA02138, USA email: [email protected]
Cecilia Garraffo
Affiliation:
Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge MA02138, USA email: [email protected]
V. Kashyap
Affiliation:
Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge MA02138, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Flares we observe on stars in white light, UV or soft X-rays are probably harbingers of coronal mass ejections (CMEs). If we use the Sun as a guide, large stellar flares will dissipate two orders of magnitude less X-ray radiative energy than the kinetic energy in the associated CME. Since coronal emission on active stars appears to be dominated by flare activity, CMEs pose a quandary for understanding the fraction of their energy budget stars can spend on magnetic activity. One answer is magnetic suppression of CMEs, in which the strong large-scale fields of active stars entrap and prevent CMEs unless their free energy exceeds a critical value. The CME-less flaring active region NOAA 2192 presents a possible solar analogue of this. Monster CMEs will still exist, and have the potential to ravage planetary atmospheres.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Audard, M., Güdel, M., Drake, J. J., & Kashyap, V. L. 2000, ApJ, 541, 396 CrossRefGoogle Scholar
Cohen, O., Attrill, G. D. R., Schwadron, N. A., Crooker, N. U., Owens, M. J., Downs, C., & Gombosi, T. I. 2010, Journal of Geophysical Research (Space Physics), 115, 10104 Google Scholar
Cohen, O., et al., 2007, ApJL, 654, L163 Google Scholar
Drake, J. J., Cohen, O., Yashiro, S., & Gopalswamy, N. 2013, ApJ, 764, 170 CrossRefGoogle Scholar
Favata, F. 2002, in Astronomical Society of the Pacific Conference Series, Vol. 277, Stellar Coronae in the Chandra and XMM-NEWTON Era, ed. Favata, F. & Drake, J. J., 115Google Scholar
Huenemoerder, D. P., Schulz, N. S., Testa, P., Drake, J. J., Osten, R. A., & Reale, F. 2010, ApJ, 723, 1558 Google Scholar
Kashyap, V. L., Drake, J. J., Güdel, M., & Audard, M. 2002, ApJ, 580, 1118 CrossRefGoogle Scholar
Lim, J. & White, S. M. 1996, ApJL, 462, L91 Google Scholar
Oran, R., et al., 2013, ApJ, 778, 176 Google Scholar
Sackmann, I.-J. & Boothroyd, A. I. 2003, ApJ, 583, 1024 Google Scholar
Sagan, C. & Mullen, G. 1972, Science, 177, 52 Google Scholar
Thalmann, J. K., Su, Y., Temmer, M., & Veronig, A. M. 2015, ApJL, 801, L23 Google Scholar
Titov, V. S. & Démoulin, P. 1999, A&A, 351, 707 Google Scholar
van der Holst, B., et al., 2014, ApJ, 782, 81 Google Scholar
Wood, B. E., Müller, H.-R., Redfield, S., & Edelman, E. 2014, ApJL, 781, L33 CrossRefGoogle Scholar
Wright, N. J., Drake, J. J., Mamajek, E. E., & Henry, G. W. 2011, ApJ, 743, 48 CrossRefGoogle Scholar
Yashiro, S. & Gopalswamy, N. 2009, in IAU Symposium, Vol. 257, IAU Symposium, ed. Gopalswamy, N. & Webb, D. F., 233–243CrossRefGoogle Scholar