Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T00:46:27.087Z Has data issue: false hasContentIssue false

Stellar Evolution in the Early Universe

Published online by Cambridge University Press:  01 June 2008

Raphael Hirschi
Affiliation:
Astrophysics group, Keele University, Lennard-Jones Lab., Keele, ST5 5BG, UK email: [email protected] IPMU, University of Tokyo, Kashiwa, Chiba 277-8582, Japan
Urs Frischknecht
Affiliation:
Dept. of Physics & Astronomy, University of Basel, CH-4056, Basel, Switzerland
F.-K. Thielemann
Affiliation:
Dept. of Physics & Astronomy, University of Basel, CH-4056, Basel, Switzerland
Marco Pignatari
Affiliation:
Astrophysics group, Keele University, Lennard-Jones Lab., Keele, ST5 5BG, UK email: [email protected] JINA, University of Notre Dame, Notre Dame, IN 46556, USA
Cristina Chiappini
Affiliation:
Observatoire Astronomique de l'Université de Genève, CH-1290, Sauverny, Switzerland Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, I-34131 Trieste, Italia
Sylvia Ekström
Affiliation:
Observatoire Astronomique de l'Université de Genève, CH-1290, Sauverny, Switzerland
Georges Meynet
Affiliation:
Observatoire Astronomique de l'Université de Genève, CH-1290, Sauverny, Switzerland
André Maeder
Affiliation:
Observatoire Astronomique de l'Université de Genève, CH-1290, Sauverny, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Massive stars played a key role in the early evolution of the Universe. They formed with the first halos and started the re-ionisation. It is therefore very important to understand their evolution. In this paper, we describe the strong impact of rotation induced mixing and mass loss at very low metallicity (Z). The strong mixing leads to a significant production of primary 14N, 13C and 22Ne. Mass loss during the red supergiant stage allows the production of Wolf-Rayet stars, type Ib,c supernovae and possibly gamma-ray bursts (GRBs) down to almost Z = 0 for stars more massive than 60 M. Galactic chemical evolution models calculated with models of rotating stars better reproduce the early evolution of N/O, C/O and 12C/13C. We calculated the weak s-process production induced by the primary 22Ne and obtain overproduction factors (relative to the initial composition, Z = 10−6) between 100-1000 in the mass range 60–90 M.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Asplund, M. 2005, ARA&A, 43, 481Google Scholar
Beers, T. C. & Christlieb, N. 2005, ARA&A, 43, 531Google Scholar
Bromm, V. & Loeb, A. 2003, Nature, 425, 812CrossRefGoogle Scholar
Chiappini, C., Ekström, S., Meynet, G., et al. 2008, A&A, 479, L9Google Scholar
Chiappini, C., Hirschi, R., Matteucci, F., et al. 2006 a, in Proceedings of Nuclei in the Cosmos IX, CERN, PoS(NIC-IX)080Google Scholar
Chiappini, C., Hirschi, R., Meynet, G., et al. 2006 b, A&A, 449, L27Google Scholar
Chiappini, C., Matteucci, F., & Ballero, S. K. 2005, A&A, 437, 429Google Scholar
Chieffi, A. & Limongi, M. 2004, ApJ, 608, 405CrossRefGoogle Scholar
Ekström, S., Meynet, G., & Maeder, A. 2007, ArXiv e-prints0709.0202, proc. “First Stars III”Google Scholar
Ekström, S., Meynet, G., Chiappini, C., et al. 2008, A&A accepted, aph0807.0573Google Scholar
Fabbian, D., Nissen, P. E., Asplund, , et al. 2008, in Conf. Precision Spectroscopy in Astrophysics, ed. Santos, N. C., et al. , 45-46Google Scholar
Frebel, A., Christlieb, N., Norris, J. E., Aoki, W., & Asplund, M. 2006, ApJ, 638, L17CrossRefGoogle Scholar
Fukuda, I. 1982, PASP, 94, 271CrossRefGoogle Scholar
Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., & Hartmann, D. H. 2003, ApJ, 591, 288CrossRefGoogle Scholar
Heger, A. & Langer, N. 2000, ApJ, 544, 1016Google Scholar
Heger, A. & Woosley, S. E. 2002, ApJ, 567, 532Google Scholar
Hirschi, R. 2005, in IAU Symposium 228, ed. Hill, V., François, P., & Primas, F., 331–332CrossRefGoogle Scholar
Hirschi, R. 2007, A&A, 461, 571Google Scholar
Hirschi, R., Chiappini, C., Meynet, G., et al. 2008, IAU250, 217–230, arXiv:0802.1675CrossRefGoogle Scholar
Iwamoto, N., Umeda, H., Tominaga, N., Nomoto, K., & Maeda, K. 2005, Science, 309, 451Google Scholar
Limongi, M., Chieffi, A., & Bonifacio, P. 2003, ApJ, 594, L123CrossRefGoogle Scholar
Maeder, A., Grebel, E. K., & Mermilliod, J.-C. 1999, A&A, 346, 459Google Scholar
Maeder, A. & Meynet, G. 2005, A&A, 440, 1041Google Scholar
Marigo, P. 2002, A&A, 387, 507Google Scholar
Martayan, C., Floquet, M., Hubert, A. M., et al. 2007, A&A, 472, 577Google Scholar
Meynet, G., Ekström, S., & Maeder, A. 2006, A&A, 447, 623Google Scholar
Meynet, G., Ekström, S., & Maeder, A., et al. 2008, IAU250, 147-160, arXiv:0802.2805Google Scholar
Meynet, G. & Maeder, A. 2000, A&A, 361, 101Google Scholar
Meynet, G. & Maeder, A. 2002, A&A, 390, 561Google Scholar
Meynet, G. & Maeder, A. 2005, A&A, 429, 581Google Scholar
Pettini, M., Zych, B. J., Steidel, C. C., et al. 2008, MNRAS, 385, 2011CrossRefGoogle Scholar
Pignatari, M., Gallino, R., Meynet, G., et al. 2008, ApJL acceptedGoogle Scholar
Pustilnik, S. A., Tepliakova, A. L., Kniazev, A. Y., et al. 2008, MNRAS, 388, L24CrossRefGoogle Scholar
Schneider, R., Omukai, K., Inoue, A. K., & Ferrara, A. 2006, MNRAS, 369, 1437Google Scholar
Spite, M., Cayrel, R., Hill, V., et al. 2006, A&A, 455, 291Google Scholar
Spite, M., Cayrel, R., Plez, B., et al. 2005, A&A, 430, 655Google Scholar
Spruit, H. C. 2002, A&A, 381, 923Google Scholar
Tominaga, N., Umeda, H., & Nomoto, K. 2007, ApJ, 660, 516CrossRefGoogle Scholar