Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T11:11:55.220Z Has data issue: false hasContentIssue false

Stellar CME activity and its possible influence on exoplanets' environments: Importance of magnetospheric protection

Published online by Cambridge University Press:  06 January 2014

Maxim L. Khodachenko
Affiliation:
Space Research Institute, Austrian Academy of Sciences, 8042 Graz, Austria email: [email protected] Institute of Nuclear Physics, Moscow State University, 119992 Moscow, Russia
Yury Sasunov
Affiliation:
Space Research Institute, Austrian Academy of Sciences, 8042 Graz, Austria email: [email protected]
Oleksiy V. Arkhypov
Affiliation:
Space Research Institute, Austrian Academy of Sciences, 8042 Graz, Austria email: [email protected]
Igor I. Alexeev
Affiliation:
Institute of Nuclear Physics, Moscow State University, 119992 Moscow, Russia
Elena S. Belenkaya
Affiliation:
Institute of Nuclear Physics, Moscow State University, 119992 Moscow, Russia
Helmut Lammer
Affiliation:
Space Research Institute, Austrian Academy of Sciences, 8042 Graz, Austria email: [email protected]
Kristina G. Kislyakova
Affiliation:
Space Research Institute, Austrian Academy of Sciences, 8042 Graz, Austria email: [email protected]
Petra Odert
Affiliation:
Institute of Physics, Karl-Franzens-University, 8010 Graz, Austria
Martin Leitzinger
Affiliation:
Institute of Physics, Karl-Franzens-University, 8010 Graz, Austria
Manuel Güdel
Affiliation:
Institute of Astronomy, University of Vienna, 1180 Vienna, Austria
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

CMEs are large-scale magnetized plasma structures carrying billions of tons of material that erupt from a star and propagate in the stellar heliosphere, interacting in multiple ways with the stellar wind. Due to the high speed, intrinsic magnetic field and the increased plasma density compared to the stellar wind background, CMEs can produce strong effects on planetary environments when they collide with a planet. The main planetary impact factors of CMEs, are associated interplanetary shocks, energetic particles accelerated in the shock regions, and the magnetic field disturbances. All these factors should be taken into account during the study of evolutionary processes on exoplanets and their atmospheric and plasma environments. CME activity of a star may vary depending on stellar age, stellar spectral type and the orbital distance of a planet. Because of relatively short range of propagation of majority of CMEs, they impact most strongly the magnetospheres and atmospheres of close orbit (< 0.1 AU) exoplanets.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Alexeev, I. I., Belenkaya, E. S., Bobrovnikov, S. Yu., & Kalegaev, V. V. 2003, Space Sci.Rev., 107, 7Google Scholar
Alexeev, I. I., Kalegaev, V. V., Belenkaya, E. S., Bobrovnikov, S. Yu., Bunce, E. J., Cowley, S. W. H., & Nichols, J. D. 2006, Geophys.Res.Lett., 33, L08101Google Scholar
Alexeev, I. I., & Belenkaya, E. S. 2005, Ann. Geophys., 23, 809Google Scholar
Audard, M., Güdel, M., Drake, J. J., & Kashyap, V. L. 2000, ApJ, 541, 396Google Scholar
Ayres, T. R. 1997, JGR, 102, 1641Google Scholar
Erkaev, N. V., Penz, T., Lammer, H., Lichtenegger, H. I. M., Biernat, H. K., Wurz, P., Grießmeier, J.-M., & Weiss, W. W. 2005, ApJ. Suppl. Ser., 157, 396Google Scholar
Erkaev, N. V., Lammer, H., Odert, P., Kulikov, Yu. N., Kislyakova, K. G., Khodachenko, M. L., Güdel, M., Hanslmeier, A., & Biernat, H. 2013, Astrobio., (in press)Google Scholar
Gershberg, R. E. 2005, A Solar-Type Activity in Main-Sequence Stars, (Berlin, Heidelberg, New York: Springer)Google Scholar
Grießmeier, J.-M., Stadelmann, A., Penz, T., Lammer, H., Selsis, F., Ribas, I., Guinan, E. F., Motschmann, U., Biernat, H. K., & Weiss, W. W. 2004, A & A, 425, 753Google Scholar
Grießmeier, J.-M., Preusse, S., Khodachenko, M. L., Motschmann, U., Mann, G., & Rucker, H. O. 2007, Planet. & Space Sci., 55, 618CrossRefGoogle Scholar
Ip, W.-H., Kopp, A., & Hu, J.-H. 2004, Astrophys. J., 602, L53Google Scholar
Johansson, E. P. G., Bagdonat, T., & Motschmann, U. 2009, A & A, 496, 869Google Scholar
Khodachenko, M. L., Ribas, I., Lammer, H., Grießmeier, J.-M., Leitner, M., Selsis, F., Eiroa, C., Hanslmeier, A., Biernat, H., Farrugia, C. J., & Rucker, H. 2007a, Astrobio., 7, 167Google Scholar
Khodachenko, M. L., Lammer, H., Lichtenegger, H. I. M., Langmayr, D., Erkaev, N. V., Grießmeier, J.-M., Leitner, M., Penz, T., Biernat, H. K., Motschmann, U., & Rucker, H. O. 2007b, Planet.Space Sci., 55, 631Google Scholar
Khodachenko, M. L., Alexeev, I. I., Belenkaya, E., Leitzinger, M., Odert, P., Grießmeier, J.-M., Zaqarashvili, T. V., Lammer, H., & Rucker, H. O. 2012, ApJ, 744, 70Google Scholar
Koskinen, T., Yelle, R. V., Lavvas, P., & Lewis, N. K. 2010, ApJ, 723, 116Google Scholar
Koskinen, T. T., Harris, M. J., Yelle, R. V., & Lavvas, P. 2012, Icarus, (in press), http://arXiv:1210.1535.Google Scholar
Lammer, H., Kasting, J. F., Chassefière, E., Johnson, R. E., Kulikov, Yu. N., & Tian, F. 2008, Space Sci Rev., 139, 399Google Scholar
Lammer, H., Odert, P., Leitzinger, M., Khodachenko, M. L., Panchenko, M., Kulikov, Yu. N., Zhang, T. L., Lichtenegger, H. I. M., Erkaev, N. V., Wuchterl, G., Micela, G., Penz, A., Biernat, H. K., Weingrill, J., Steller, M., Ottacher, H., Hasiba, J., & Hanslmeier, A. 2009) A & A, 506, 399CrossRefGoogle Scholar
Lichtenegger, H. I. M., Gröller, H., Lammer, H., Kulikov, Yu. N., & Shematovich, V. 2009, Geophys. Res. Lett. 36 CiteID L10204Google Scholar
Mestel, L. 1968, MNRAS, 138, 359Google Scholar
Newkirk, G. Jr. 1980, Geochim. Cosmochim. Acta Suppl., 13, 293Google Scholar
Parker, E. N. 1958, ApJ, 128, 664Google Scholar
Penz, T., Erkaev, N. V., Kulikov, Yu. N., Langmayr, D., Lammer, H., Micela, G., Cecchi-Pestellini, C., Biernat, H. K., Selsis, F., Barge, P., Deleuil, M., & Léger, A. 2008, Planet. Space Sci., 56, 1260Google Scholar
Preusse, S., Kopp, A., Büchner, J., & Motschmann, U. 2005, A & A, 434, 1191CrossRefGoogle Scholar
Ribas, I., Guinan, E. F., Güdel, M., & Audard, M. 2005, ApJ, 622, 680Google Scholar
Scalo, J., Kaltenegger, L., Segura, A. G., Fridlund, M., Ribas, I., Kulikov, Yu. N., Grenfell, J. L., Rauer, H., Odert, P., Leitzinger, M., Selsis, F., Khodachenko, M. L., Eiroa, C., Kasting, J., & Lammer, H. 2007, Astrobiol., 7, 85CrossRefGoogle Scholar
Sheeley, N. R. Jr., Wang, Y.-M., Hawley, S. H., Brueckner, G. E., Dere, K. P., Howard, R. A., Koomen, M. J., Korendyke, C. M., Michels, D. J., Paswaters, S. E., Socker, D. G., St.Cyr, O. C., Wang, D., Lamy, P. L., Llebaria, A., Schwenn, R., Simnett, G. M., Plunkett, S., & Biesecker, D. A. 1997, ApJ, 484, 472Google Scholar
Skumanich, A. 1972, ApJ, 171, 565Google Scholar
Tian, F., Kasting, J. F., Liu, H., & Roble, R. G. 2008, J. Geophys. Res., 113, E05008Google Scholar
Walker, J. C. G., Hays, P. B., & Kasting, J. F. 1981, J. Geophys. Res., 86, 9776Google Scholar
Wood, B. E., Müller, H.-R., Zank, G. P., & Linsky, J. L. 2002, ApJ, 574, 412Google Scholar
Wood, B. E., Müller, H.-R., Zank, G. P., Linsky, J. L., & Redfield, S. 2005, ApJ, 628, L143Google Scholar