Hostname: page-component-5f745c7db-nzk4m Total loading time: 0 Render date: 2025-01-06T12:13:59.288Z Has data issue: true hasContentIssue false

Stellar Atmospheres and Supernovae: Systematic Errors

Published online by Cambridge University Press:  29 August 2024

D. John Hillier*
Affiliation:
Department of Physics and Astronomy & Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260, USA.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Over the last two decades there have been considerable advances in modelling the spectra of massive stars and supernovae (SNe). Despite this progress, there are still numerous uncertainties that affect the accuracy of models. For massive stars, convection, instabilities, clumping, and our inability to model stellar winds self-consistently likely introduce systematic errors into our analyses. For SNe, and particularly for core-collapse SNe, departures from spherical symmetry strongly affect observed spectra and need to be taken into account. There are also issues with clumping, and mixing processes (both in the progenitor and the SN explosion) that need to be resolved. For both massive stars and SNe, the accuracy and availability of atomic data continues to be an ongoing issue influencing analyses.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Agrawal, P., Szécsi, D., Stevenson, S., Eldridge, J. J., & Hurley, J. 2022, MNRAS, 512, 5717 Google Scholar
Cassinelli, J. P. & Olson, G. L. 1979, ApJ, 229, 304 10.1086/156956CrossRefGoogle Scholar
Cassinelli, J. P. & Swank, J. H. 1983, ApJ, 271, 681 10.1086/161235CrossRefGoogle Scholar
Catchpole, R. M., Whitelock, P. A., & Feast, M. W., et al. 1988, MNRAS, 231, 75P 10.1093/mnras/231.1.75PCrossRefGoogle Scholar
Cherchneff, I. & Sarangi, A. 2011, in The Molecular Universe, ed. J. Cernicharo & R. Bachiller, Vol. 280, 228–236Google Scholar
Chlebowski, T. 1989, ApJ, 342, 1091 Google Scholar
Chugai, N. N. 2007, in AIP Conf. Ser., Vol. 937, Supernova 1987A: 20 Years After: Supernovae and Gamma-Ray Bursters, ed. S. Immler, K. Weiler, & R. McCray, 357–364Google Scholar
Collins, C., Müller, B., & Heger, A. 2018, MNRAS, 473, 1695 Google Scholar
Cropper, M., Bailey, J., McCowage, J., Cannon, R. D., & Couch, W. J. 1988, MNRAS, 231, 695 Google Scholar
Crowther, P. A., Hillier, D. J., & Evans, C. J., et al. 2002, ApJ, 579, 774 Google Scholar
De Becker, M., Rauw, G., & Linder, N. 2009, ApJ, 704, 964 Google Scholar
Dessart, L. & Hillier, D. J. 2019, A&A, 625, A9 Google Scholar
Dessart, L. & Hillier, D. J. 2020a, A&A, 642, A33 Google Scholar
Dessart, L. & Hillier, D. J. 2020b, A&A, 643, L13 Google Scholar
Ensman, L. M. & Woosley, S. E. 1988, ApJ, 333, 754 Google Scholar
Eversberg, T., Lépine, S., & Moffat, A. F. J. 1998, ApJ, 494, 799 Google Scholar
Farrell, E. J., Groh, J. H., Meynet, G., & Eldridge, J. J. 2020, MNRAS, 494, L53 Google Scholar
Feldmeier, A., Kudritzki, R. P., Palsa, R., Pauldrach, A. W. A., & Puls, J. 1997, A&A, 320, 899 Google Scholar
Flores, B. L. & Hillier, D. J. 2021, MNRAS, 504, 311 Google Scholar
Flores, B. L. & Hillier, D. J. 2022, MNRAS, submittedGoogle Scholar
Fransson, C. & Chevalier, R. A. 1989, ApJ, 343, 323 Google Scholar
Freedman, W. L. 2021, ApJ, 919, 16 Google Scholar
Freedman, W. L., Madore, B. F., & Hatt, D., et al. 2019, ApJ, 882, 34 Google Scholar
Gormaz-Matamala, A. C., Curé, M., & Hillier, D. J., et al. 2021, ApJ, 920, 64 Google Scholar
Gray, D. F. 2008, The Observation and Analysis of Stellar Photospheres (Cambridge Uni. Press)Google Scholar
Groh, J. H., Meynet, G., Ekström, S., & Georgy, C. 2014, A&A, 564, A30 Google Scholar
Hammer, N. J., Janka, H.-T., & Müller, E. 2010, ApJ, 714, 1371 Google Scholar
Hanuschik, R. W. & Dachs, J. 1987, A&A, 182, L29 Google Scholar
Hillier, D. J. 1991a, A&A, 247, 455 Google Scholar
Hillier, D. J. 1991b, in IAU Symposium, Vol. 143, Wolf-Rayet Stars and Interrelations with Other Massive Stars in Galaxies, ed. K. A. van der Hucht & B. Hidayat, 59Google Scholar
Hillier, D. J., Bouret, J.-C., Lanz, T., & Busche, J. R. 2012, MNRAS, 426, 1043 Google Scholar
Hillier, D. J. & Miller, D. L. 1999, ApJ, 519, 354 Google Scholar
Janka, H.-T., Langanke, K., Marek, A., Mart nez-Pinedo, G., & Müller, B. 2007, Phys. Rep., 442, 38Google Scholar
Jerkstrand, A., Fransson, C., & Kozma, C. 2011, A&A, 530, A45+Google Scholar
Jerkstrand, A., Fransson, C., Maguire, K., Smartt, S., Ergon, M., & Spyromilio, J. 2012, A&A, 546, A28 Google Scholar
Kawabata, K. S., Jeffery, D. J., Iye, M., & et al. 2002, ApJL, 580, L39 10.1086/345545CrossRefGoogle Scholar
Liljegren, S., Jerkstrand, A., Barklem, P. S., Nyman, G., Brady, R., & Yurchenko, S. N. 2022, arXiv e-prints, arXiv:2203.07021Google Scholar
Liljegren, S., Jerkstrand, A., & Grumer, J. 2020, A&A, 642, A135 Google Scholar
Lucy, L. B. & White, R. L. 1980, ApJ, 241, 300 Google Scholar
Massa, D., Fullerton, A. W., Sonneborn, G., & Hutchings, J. B. 2003, ApJ, 586, 996 Google Scholar
Matsuura, M. 2017, Dust and Molecular Formation in Supernovae, ed. A. W. Alsabti & P. Murdin (Springer, Cham.), 2125Google Scholar
Moens, N., Poniatowski, L. G., Hennicker, L., Sundqvist, J. O., El Mellah, I., & Kee, N. D. 2022, arXiv e-prints, arXiv:2203.01108Google Scholar
Najarro, F., Hillier, D. J., Puls, J., Lanz, T., & Martins, F. 2006, A&A, 456, 659 CrossRefGoogle Scholar
Oskinova, L. M., Hamann, W.-R., & Feldmeier, A. 2007, A&A, 476, 1331 Google Scholar
Owocki, S. P. 2008, in Clumping in Hot-Star Winds, ed. W.-R. Hamann, A. Feldmeier, & L. M. Oskinova (Potsdam: Univ.-Verl), 121Google Scholar
Owocki, S. P., Castor, J. I., & Rybicki, G. B. 1988, ApJ, 335, 914 CrossRefGoogle Scholar
Prinja, R. K. & Massa, D. L. 2010, A&A, 521, L55 CrossRefGoogle Scholar
Prinja, R. K. & Massa, D. L. 2013, A&A, 559, A15 Google Scholar
Rho, J., Evans, A., Geballe, T. R., & Banerjee, D. P. K., et al. 2021, ApJ, 908, 232 Google Scholar
Riess, A. G., Yuan, W., & Macri, Lucas M., et. al. 2022, ApJL, 934, L7 Google Scholar
Sundqvist, J. O., Björklund, R., Puls, J., & Najarro, F. 2019, A&A, 632, A126 Google Scholar
Sundqvist, J. O. & Owocki, S. P. 2013, MNRAS, 428, 1837 Google Scholar
Sundqvist, J. O., Puls, J., Feldmeier, A., & Owocki, S. P. 2011, A&A, 528, A64+Google Scholar
Sundqvist, J. O., Puls, J., & Owocki, S. P. 2014, A&A, 568, A59 Google Scholar
Voels, S. A., Bohannan, B., Abbott, D. C., & Hummer, D. G. 1989, ApJ, 340, 1073 Google Scholar
Wang, L., Wheeler, J. C., Li, Z., & Clocchiatti, A. 1996, ApJ, 467, 435 Google Scholar
Wongwathanarat, A. 2017, in Supernova 1987A:30 years later - Cosmic Rays and Nuclei from Supernovae and their Aftermaths, ed. A. Marcowith, M. Renaud, G. Dubner, A. Ray, & A. Bykov, Vol. 331, 101–106Google Scholar
Woosley, S. E. & Heger, A. 2007, Phys. Rep., 442, 269 CrossRefGoogle Scholar
Woosley, S. E., Heger, A., & Weaver, T. A. 2002, Reviews of Modern Physics, 74, 1015 Google Scholar
Zsargó, J., Hillier, D. J., Bouret, J.-C., Lanz, T., Leutenegger, M. A., & Cohen, D. H. 2008, ApJL, 685, L149 CrossRefGoogle Scholar