Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T11:52:37.370Z Has data issue: false hasContentIssue false

Stellar activity and winds shaping the atmospheres of Earth-like planets

Published online by Cambridge University Press:  13 January 2020

Theresa Lueftinger*
Affiliation:
Department of Astrophysics, University of Vienna, Tuerkenschanzstrasse 17, A-1180Wien, Austria emails: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]
Manuel Güdel
Affiliation:
Department of Astrophysics, University of Vienna, Tuerkenschanzstrasse 17, A-1180Wien, Austria emails: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]
Sudeshna Boro Saikia
Affiliation:
Department of Astrophysics, University of Vienna, Tuerkenschanzstrasse 17, A-1180Wien, Austria emails: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]
Colin Johnstone
Affiliation:
Department of Astrophysics, University of Vienna, Tuerkenschanzstrasse 17, A-1180Wien, Austria emails: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]
Beatrice Kulterer
Affiliation:
Department of Astrophysics, University of Vienna, Tuerkenschanzstrasse 17, A-1180Wien, Austria emails: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]
Oleg Kochukhov
Affiliation:
Dept. of Astronomy & Space Physics, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden email: [email protected]
Kristina Kislyakova
Affiliation:
Department of Astrophysics, University of Vienna, Tuerkenschanzstrasse 17, A-1180Wien, Austria emails: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Planets orbiting young, active stars are embedded in an environment that is far from being as calm as the present solar neighbourhood. They experience the extreme environments of their host stars, which cannot have been without consequences for young stellar systems and the evolution of Earth-like planets to habitable worlds. Stellar magnetism and the related stellar activity are crucial drivers of ionization, photodissociation, and chemistry. Stellar winds can compress planetary magnetospheres and even strip away the outer layers of their atmospheres, thus having an enormous impact on the atmospheres and the magnetospheres of surrounding exoplanets. Modelling of stellar magnetic fields and their winds is extremely challenging, both from the observational and the theoretical points of view, and only ground breaking advances in observational instrumentation and a deeper theoretical understanding of magnetohydrodynamic processes in stars enable us to model stellar magnetic fields and their winds – and the resulting influence on the atmospheres of surrounding exoplanets – in more and more detail. We have initiated a national and international research network (NFN): ‘Pathways to Habitability – From Disks to Active Stars, Planets to Life’, to address questions on the formation and habitability of environments in young, active stellar/planetary systems. We discuss the work we are carrying out within this project and focus on how stellar evolutionary aspects in relation to activity, magnetic fields and winds influence the erosion of planetary atmospheres in the habitable zone. We present recent results of our theoretical and observational studies based on Zeeman Doppler Imaging (ZDI), field extrapolation methods, wind simulations, and the modeling of planetary upper atmospheres.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020 

References

Claire, M. W., Sheets, J., Cohen, M., Ribas, I., Meadows, V. S., & Catling, D. C. 2012, ApJ, 757, 95, 12CrossRefGoogle Scholar
Donati, J.-F., Morin, J., Petit, P., et al. 2008, MNRAS, 390, 54556010.1111/j.1365-2966.2008.13799.xCrossRefGoogle Scholar
Fichtinger, B., Güdel, M., Mutel, R. L., Hallinan, G., Gaidos, E., Skinner, S. L., Lynch, Ch., & Gayley, K. G. 2017, A&A, 599ACrossRefGoogle Scholar
Gregory, S. G., Donati, J.-F., Morin, J., Hussain, G. A. J., Mayne, N. J., Hillenbrand, L. A., & Jardine, M. 2012, ApJ, 755, id. 97, 20CrossRefGoogle Scholar
Güdel, M., Guinan, E. F., & Skinner, S. L. 1997, ApJ, 483, 947960CrossRefGoogle Scholar
Johnstone, C. P., Jardine, M., Gregory, S. G., Donati, J.-F., & Hussain, G. 2014, MNRAS, 437, 32023220CrossRefGoogle Scholar
Johnstone, C. P., Güdel, M., Lüftinger, T., Toth, G., & Brott, I. 2015a, A&A, 577, id.27, 22CrossRefGoogle Scholar
Johnstone, C. P., Güdel, M., Brott, I., & Lüftinger, T. 2015b, A&A, 577, id.28, 25CrossRefGoogle Scholar
Lynch, B. J., Airapetian, V. S., Kazachenko, M. D., DeVore, C. R., Lüftinger, T., Kochukhov, O., Rosén, L., & Abbett, W. P. 2019, Nat. Astr., submittedGoogle Scholar
Lüftinger, T., Kochukhov, O., Ryabchikova, T., Piskunov, N., Weiss, W. W., & Ilyin, I. 2010a, A&A, 509, id71, 12CrossRefGoogle Scholar
Lüftinger, T., Frhlich, H.-E., Weiss, W. W., et al. 2010b, A&A, 509, id43, 11Google Scholar
Morin, J., Donati, J.-F., Petit, P., Delfosse, X., Forveille, T., & Jardine, M. M. 2010, MNRAS, 407, 22692286CrossRefGoogle Scholar
Ribas, I., Guinan, E. F., Güdel, M., & Audard, M. 2005, ApJ, 622, 68069410.1086/427977CrossRefGoogle Scholar
Tu, L., Johnstone, C. P., Güdel, M., & Lammer, H. 2015, A&A, 577, idL3, 4CrossRefGoogle Scholar
Wood, B. E., Mller, H.-R., Zank, G. P., Linsky, J. L., & Redfield, S. 2005, ApJ, 628, L143L146CrossRefGoogle Scholar