Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T20:24:09.911Z Has data issue: false hasContentIssue false

Star Formation & Molecular Gas over Cosmic Time

Published online by Cambridge University Press:  17 July 2013

E. Daddi
Affiliation:
CEA Saclay, DSM/Irfu/Sérvice d'Astrophysique, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex, France
M. T. Sargent
Affiliation:
CEA Saclay, DSM/Irfu/Sérvice d'Astrophysique, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex, France
M. Béthermin
Affiliation:
CEA Saclay, DSM/Irfu/Sérvice d'Astrophysique, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex, France
G. Magdis
Affiliation:
Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent observations have revealed the existence of a ‘main sequence’ of star-forming galaxies out to high redshift. While the majority of star-forming galaxies are observed to be close to this relation between star formation rate (SFR) and stellar mass, a smaller subset of the population – so-called ‘starbursts’ – displays specific star-formation rates and star-formation efficiencies that exceed those of normal (main-sequence) galaxies by up to an order of magnitude. A large degree of homogeneity and similarity has been observed for the properties of the population of normal galaxies across a broad redshift range, including a narrow correlation between their CO luminosity (hence gas content) and IR luminosity and an almost invariable IR SED getting warmer with redshift, while starburst galaxies display systematically different properties. This can be used to devise a simple description of the evolution of the star-forming galaxy population since z ~ 2 and, with a higher degree of uncertainty, even further back in time, in a scheme that we dub two star formation mode framework (2-SFM). We show how this can successfully reproduce the shape of the IR luminosity function of galaxies as a function of redshifts, and the IR number counts. Furthermore, we can link the cosmic evolution of the sSFR of main-sequence galaxies to the evolution of the molecular fuel reservoir and to derive estimates of the molecular gas mass functions of star-forming galaxies that are based on their empirically measured gas properties rather than simulations or semi-analytical modelling. We also infer the evolution of the cosmic abundance of molecular gas and briefly discuss its expected observational signature by molecular line emission, the CO luminosity function.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Bauermeister, A., Blitz, L., & Ma, C.-P. 2010, ApJ, 717, 323Google Scholar
Bell, E. F., et al. 2007, ApJ, 663, 834CrossRefGoogle Scholar
Béthermin, M., Dole, H., Lagache, G., Le Borgne, D., & Penin, A. 2011, A&A, 529, 4Google Scholar
Béthermin, M., Le Floc'h, E., Ilbert, O., et al. 2012, A&A, 542, A58Google Scholar
Béthermin, M., Daddi, E., Magdis, G., et al. 2012, ApJ (Letters), 757, L23CrossRefGoogle Scholar
Bouwens, R. J., Illingworth, G. D., Oesch, P. A., et al. 2011, ApJ, 737, 90Google Scholar
Brinchmann, J., Charlot, S., White, S. D. M., et al. 2004, MNRAS, 351, 1151CrossRefGoogle Scholar
Daddi, E., et al. 2007, ApJ, 670, 156CrossRefGoogle Scholar
Daddi, E., et al. 2010a, ApJ, 713, 686CrossRefGoogle Scholar
Daddi, E., et al. 2010b, ApJ (Letters), 714, L118CrossRefGoogle Scholar
Dannerbauer, H., Daddi, E., Riechers, D. A., et al. 2009, ApJ (Letters), 698, L178CrossRefGoogle Scholar
Davé, R., Finlator, K., & Oppenheimer, B. D. 2012, MNRAS, 421, 98Google Scholar
Di Matteo, P., Combes, F., Melchior, A.-L., & Semelin, B. 2007, A&A, 468, 61Google Scholar
Duffy, A. R., Kay, S. T., Battye, R. A., et al. 2012, MNRAS, 420, 2799Google Scholar
Elbaz, D., et al. 2007, A&A, 468, 33Google Scholar
Elbaz, D., Dickinson, M., Hwang, H. S., et al. 2011, A&A, 533, 119Google Scholar
Feldmann, R., Gnedin, N. Y., & Kravtsov, A. V. 2012, ApJ, 747, 124Google Scholar
Fu, J., Kauffmann, G., Li, C., & Guo, Q. 2012, MNRAS, 424, 2701Google Scholar
Geach, J. E., Smail, I., Moran, S. M., MacArthur, L. A., Lagos, C. d. P., & Edge, A. C. 2011, ApJ (Letters), 730, L19CrossRefGoogle Scholar
Genzel, R., et al. 2010, MNRAS, 407, 2091Google Scholar
Genzel, R., Tacconi, L. J., Combes, F., et al. 2012, ApJ, 746, 69CrossRefGoogle Scholar
González, V., Labbé, I., Bouwens, R. J., et al. 2010, A&A, 713, 115Google Scholar
Goto, T., et al. 2011, MNRAS, 414, 1903CrossRefGoogle Scholar
Graciá-Carpio, J., Sturm, E., Hailey-Dunsheath, S., et al. 2011, ApJ (Letters), 728, L7CrossRefGoogle Scholar
Gruppioni, C., Pozzi, F., Zamorani, G., & Vignali, C. 2011, MNRAS, 416, 70Google Scholar
Ilbert, O., Salvato, M., Le Floc'h, E., et al. 2010, ApJ, 709, 644Google Scholar
Karim, A., et al. 2011, ApJ, 730, 61Google Scholar
Kennicutt, R. C. Jr. 1998, ARAA, 36, 189Google Scholar
Keres, D., Yun, M. S., & Young, J. S. 2003, ApJ, 582, 659CrossRefGoogle Scholar
Lacey, C. G., Baugh, C. M., Frenk, C. S., et al. 2010, MNRAS, 405, 2Google Scholar
Lagos, C.d.P., Baugh, C. M., Lacey, C. G., et al. 2011, MNRAS, 418, 1649Google Scholar
Le Floc'h, E., et al. 2005, ApJ, 632, 169Google Scholar
Leroy, A. K., et al. 2009, AJ, 137, 4670Google Scholar
Leroy, A. K., et al. 2011, ApJ, 737, 12CrossRefGoogle Scholar
Magdis, G. E., Daddi, E., Sargent, M., et al. 2012, ApJ (Letters), 758, L9Google Scholar
Magdis, G. E., Daddi, E., Béthermin, M., et al. 2012, ApJ, 760, 6Google Scholar
Magnelli, B., Elbaz, D., Chary, R. R., et al. 2009, A&A, 496, 57Google Scholar
Magnelli, B., Elbaz, D., Chary, R. R., et al. 2011, A&A, 528, A35Google Scholar
Mannucci, F., Cresci, G., Maiolino, R., Marconi, A., & Gnerucci, A. 2010, MNRAS, 408, 2115Google Scholar
Marchesini, D., van Dokkum, P. G., Förster Schreiber, N. M., et al. 2009, ApJ, 701, 1765Google Scholar
Massardi, M., Bonaldi, A., Negrello, M., et al. 2010, MNRAS, 404, 532Google Scholar
Narayanan, D., Bothwell, M., & Davé, R. 2012, MNRAS, 426, 1178Google Scholar
Obreschkow, D. & Rawlings, S. 2009, MNRAS, 394, 1857CrossRefGoogle Scholar
Obreschkow, D. & Rawlings, S. 2009, ApJ (Letters), 696, L129CrossRefGoogle Scholar
Pannella, M., Carilli, C. L., Daddi, E., et al. 2009, ApJ (Letters), 698, L116Google Scholar
Reddy, N. A., Pettini, M., Steidel, C. C., et al. 2012, ApJ, 754, 25CrossRefGoogle Scholar
Rodighiero, G., et al. 2010, A&A, 515, A8Google Scholar
Rodighiero, G., et al. 2011, ApJ (Letters), 739, L40Google Scholar
Rujopakarn, W., Rieke, G. H., Eisenstein, D. J., & Juneau, S. 2011, ApJ, 726, 93Google Scholar
Saintonge, A., et al. 2011, MNRAS, 415, 32CrossRefGoogle Scholar
Salmi, F., Daddi, E., Elbaz, D., et al. 2012, ApJ (Letters), 754, L14Google Scholar
Sanders, D. B., Mazzarella, J. M., Kim, D.-C., Surace, J. A., & Soifer, B. T. 2003, AJ, 126, 1607Google Scholar
Sargent, M. T., Béthermin, M., Daddi, E., & Elbaz, D. 2012, ApJ (Letters), 747, L31Google Scholar
Schruba, A., Leroy, A. K., Walter, F., et al. 2012, AJ, 143, 138Google Scholar
Smolčić, V., et al. 2009, ApJ, 690, 610Google Scholar
Solomon, P. M., Downes, D., Radford, S. J. E., & Barrett, J. W. 1997, ApJ, 478, 144Google Scholar
Strazzullo, V., Pannella, M., Owen, F. N., et al. 2010, ApJ, 714, 1305Google Scholar
Tacconi, L. J., et al. 2010, Nature, 463, 781Google Scholar
Wuyts, S., Förster Schreiber, N. M., van der Wel, A., et al. 2011, ApJ, 742, 96Google Scholar