Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T05:25:32.186Z Has data issue: false hasContentIssue false

Star formation in dwarf galaxies in the ELAIS N1 field

Published online by Cambridge University Press:  30 October 2019

Tímea O. Kovács
Affiliation:
Eötvös Loránd University, Hungary
Denis Burgarella
Affiliation:
Laboratoire d’Astrophysique de Marseille, France
L. Viktor Tóth
Affiliation:
Eötvös Loránd University, Hungary Konkoly Observatory of the Hungarian Academy of Sciences, Hungary
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We estimated several parameters of dwarf galaxies, including their star formation rate and dust mass, and compared them with galaxies with larger stellar masses.

We have chosen dwarf galaxies in the ELAIS N1 field, and fitted their Spectral Energy Distributions (SED). We used data from the new Herschel SPIRE and PACS Point Source catalogues to constrain the infrared radiation. Data available in VIZIER from multiple surveys have also been used.

We determined that the star formation rate (SFR), M* and Mdust is one order of magnitude lower in dwarf galaxies compared to galaxies with larger stellar masses. However, the starburtiness was higher in the dwarf galaxies. They also had lower redshifts than normal galaxies, so we compared them to a subsample of normal galaxies with lower redshifts. The dust masses and SFRs of the dwarf galaxies were slightly lower, but their starburtiness was higher.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Boquien, et al. 2018, A&A, in pressGoogle Scholar
Blanton, M. R., Bershady, M. A., Abolfathi, B., et al. 2017, AJ, 154, 28 CrossRefGoogle Scholar
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000 CrossRefGoogle Scholar
Burgarella, D., Buat, V., & Iglesias-Páramo, J. 2005, MNRAS, 360, 1413 CrossRefGoogle Scholar
Chabrier, G. 2003, PASP, 115, 763 CrossRefGoogle Scholar
Cutri, R. M., & et al. 2014, VizieR Online Data Catalog, II/328.Google Scholar
Davidge, H., Serjeant, S., Pearson, C., et al. 2017, MNRAS, 472, 4259 CrossRefGoogle Scholar
Draine, B. T., & Li, A. 2007, ApJ, 657, 810 CrossRefGoogle Scholar
Magdis, G. E., Rigopoulou, D., Helou, G., et al. 2013, A&A, 558, A136.Google Scholar
Marton, G., Calzoletti, L., Perez Garcia, A. M., et al. 2017, arXiv:1705.05693Google Scholar
Noll, S., Burgarella, D., Giovannoli, E., et al. 2009, A&A, 507, 1793 Google Scholar
Rodighiero, G., Daddi, E., Baronchelli, I., et al. 2011, ApJ(Letters), 739, L40 Google Scholar
Rowan-Robinson, M., Oliver, S., Efstathiou, A., et al. 1999, The Universe as Seen by ISO, 427, 1011 Google Scholar
Rowan-Robinson, M., Gonzalez-Solares, E., Vaccari, M., & Marchetti, L. 2013, MNRAS, 428, 1958 CrossRefGoogle Scholar
Sargent, M. T., Béthermin, M., Daddi, E., & Elbaz, D. 2012, ApJ(Letters), 747, L31 Google Scholar
Schreiber, C., Pannella, M., Elbaz, D., et al. 2015, A&A, 575, A74 Google Scholar
Schulz, B., Marton, G., Valtchanov, I., et al. 2017, arXiv:1706.00448Google Scholar
Toba, Y., Oyabu, S., Matsuhara, H., et al. 2014, ApJ, 788, 45.CrossRefGoogle Scholar
Trichas, M., Rowan-Robinson, M., Georgakakis, A., et al. 2010, MNRAS, 405, 2243.Google Scholar
Wu, Y., Helou, G., Armus, L., et al. 2010, ApJ, 723, 895.CrossRefGoogle Scholar