Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T02:45:59.261Z Has data issue: false hasContentIssue false

Star formation in cloud cores — simulations and observations of dense molecular cores and the formation of solar mass stars

Published online by Cambridge University Press:  13 January 2020

C. Federrath*
Affiliation:
Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Star formation is inefficient. Recent advances in numerical simulations and theoretical models of molecular clouds show that the combined effects of interstellar turbulence, magnetic fields and stellar feedback can explain the low efficiency of star formation. The star formation rate is highly sensitive to the driving mode of the turbulence. Solenoidal driving may be more important in the Central Molecular Zone, compared to more compressive driving agents in spiral-am clouds. Both theoretical and observational efforts are underway to determine the dominant driving mode of turbulence in different Galactic environments. New observations with ALMA, combined with other instruments such as CARMA, JCMT and the SMA begin to reveal the magnetic field structure of dense cores and protostellar disks, showing highly complex field geometries with ordered and turbulent field components. Such complex magnetic fields can give rise to a range of stellar masses and jet/outflow efficiencies in dense cores and protostellar accretion disks.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020 

References

Arzoumanian, D., Shimajiri, Y., Inutsuka, S.-i., Inoue, T., & Tachihara, K. 2018, PASJ, 70, 96 CrossRefGoogle Scholar
Bate, M. R. 2012, MNRAS, 419, 3115 CrossRefGoogle Scholar
Brunt, C. M., & Federrath, C. 2014, MNRAS, 442, 1451 CrossRefGoogle Scholar
Cox, E. G., Harris, R. J., Looney, L. W., et al. 2018, ApJ, 855, 92 CrossRefGoogle Scholar
Cunningham, A. J., Krumholz, M. R., McKee, C. F., & Klein, R. I. 2018, MNRAS, 476, 771 CrossRefGoogle Scholar
Federrath, C. 2013a, MNRAS, 436, 1245 CrossRefGoogle Scholar
Federrath, C. 2013b, MNRAS, 436, 3167 CrossRefGoogle Scholar
Federrath, C. 2015, MNRAS, 450,xs 4035 CrossRefGoogle Scholar
Federrath, C. 2016, JPP, 82, 535820601 Google Scholar
Federrath, C., & Klessen, R. S. 2012, ApJ, 761, 156 CrossRefGoogle Scholar
Federrath, C., & Klessen, R. S. 2013, ApJ, 763, 51 CrossRefGoogle Scholar
Federrath, C., Klessen, R. S., & Schmidt, W. 2008, ApJ, 688, L79 CrossRefGoogle Scholar
Federrath, C., Krumholz, M., & Hopkins, P. F. 2017a, Journal of Physics Conference Series, 837, 012007 CrossRefGoogle Scholar
Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt, W., & Mac Low, M. 2010, A&A, 512, A81 Google Scholar
Federrath, C., Rathborne, J. M., Longmore, S. N., et al. 2016, ApJ, 832, 143 CrossRefGoogle Scholar
Federrath, C., Rathborne, J. M., Longmore, S. N., et al. 2017b, IAU Symposium, 322, ed. Crocker, R. M., Longmore, S. N., & Bicknell, G. V., 123128 Google Scholar
Gerrard, I. A., Federrath, C., & Kuruwita, R. L. 2019, MNRAS, submittedGoogle Scholar
Guszejnov, D., Hopkins, P. F., Grudic′, M. Y., Krumholz, M. R., & Federrath, C. 2018, MNRASGoogle Scholar
Hennebelle, P., & Chabrier, G. 2011, ApJ, 743, L29 CrossRefGoogle Scholar
Hernandez, A. K., & Tan, J. C. 2015, ApJ, 809, 154 CrossRefGoogle Scholar
Hopkins, P. F., Kereˇs, D., On˜orbe, J., et al. 2014, MNRAS, 445, 581 CrossRefGoogle Scholar
Hull, C. L. H., Girart, J. M., Tychoniec, Ł., et al. 2017, ApJ, 847, 92 CrossRefGoogle Scholar
Jin, K., Salim, D. M., Federrath, C., et al. 2017, MNRAS, 469, 383 CrossRefGoogle Scholar
Kainulainen, J., Federrath, C., & Henning, T. 2013, A&A, 553, L8 Google Scholar
Kainulainen, J., Federrath, C., & Henning, T. 2014, Science, 344, 183 CrossRefGoogle Scholar
Kauffmann, J., Pillai, T., & Goldsmith, P. F. 2013, ApJ, 779, 185 CrossRefGoogle Scholar
Konstandin, L., Girichidis, P., Federrath, C., & Klessen, R. S. 2012, ApJ, 761, 149 CrossRefGoogle Scholar
Körtgen, B., Federrath, C., & Banerjee, R. 2017, MNRAS, 472, 2496 CrossRefGoogle Scholar
Krumholz, M. R., Klein, R. I., & McKee, C. F. 2012, ApJ, 754, 71 CrossRefGoogle Scholar
Krumholz, M. R., & McKee, C. F. 2005, ApJ, 630, 250 CrossRefGoogle Scholar
Krumholz, M. R., & Tan, J. C. 2007, ApJ, 654, 304 CrossRefGoogle Scholar
Kuruwita, R. L., Federrath, C., & Ireland, M. 2017, MNRAS, 470, 1626 CrossRefGoogle Scholar
Lee, C.-F., Li, Z.-Y., Hirano, N., et al. 2018, ApJ, 863, 94 CrossRefGoogle Scholar
Offner, S. S. R., Klein, R. I., McKee, C. F., & Krumholz, M. R. 2009, ApJ, 703, 131 CrossRefGoogle Scholar
Onus, A., Krumholz, M. R., & Federrath, C. 2018, MNRAS, 479, 1702 CrossRefGoogle Scholar
Orkisz, J. H., Pety, J., Gerin, M., et al. 2017, A&A, 599, A99 Google Scholar
Padoan, P., & Nordlund, Å. 2011, ApJ, 730, 40 CrossRefGoogle Scholar
Sharda, P., Federrath, C., da Cunha, E., Swinbank, A. M., & Dye, S. 2018, MNRAS, 477, 4380 CrossRefGoogle Scholar
Taylor, P., & Kobayashi, C. 2015, MNRAS, 448, 1835 CrossRefGoogle Scholar
Zhang, Y., Higuchi, A. E., Sakai, N., et al. 2018, ApJ, 864, 76 CrossRefGoogle Scholar