Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T16:34:28.373Z Has data issue: false hasContentIssue false

Star Formation Efficiency at Intermediate Redshift

Published online by Cambridge University Press:  21 March 2013

F. Combes
Affiliation:
Observatoire de Paris, LERMA (CNRS:UMR8112), 61 Av. de l'Observatoire, F-75014, Paris, France email: [email protected]
S. García-Burillo
Affiliation:
Observatorio Astronómico Nacional (OAN)-Observatorio de Madrid, Alfonso XII, 3, 28014-Madrid, Spain
J. Braine
Affiliation:
Laboratoire d'Astrophysique de Bordeaux, UMR 5804, Université Bordeaux I, BP 89, 33270 Floirac, France
E. Schinnerer
Affiliation:
Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, 69117 Heidelberg, Germany
F. Walter
Affiliation:
Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, 69117 Heidelberg, Germany
L. Colina
Affiliation:
Departamento de Astrofisica, Centro de Astrobiologia (CSIC/INTA), Torrejón de Ardoz, 28850 Madrid, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Star formation is evolving very fast in the second half of the Universe, and it is as yet unclear whether this is due to evolving gas content, or evolving star formation efficiency (SFE). We have carried out a survey of ultra-luminous galaxies (ULIRG) between z = 0.2 and 1, to check the gas fraction in this domain of redshift which is still poorly known. Our survey with the IRAM-30m detected 33 galaxies out of 69, and we derive a significant evolution of both the gas fraction and SFE of ULIRGs over the whole period, and in particular a turning point around z = 0.35. The result is sensitive to the CO-to-H2 conversion factor adopted, and both gas fraction and SFE have comparable evolution, when we adopt the low starburst conversion factor of α = 0.8 M (K km s−1 pc2)−1. Adopting a higher α will increase the role of the gas fraction. Using α = 0.8, the SFE and the gas fraction for z∼0.2-1.0 ULIRGs are found to be significantly higher, by a factor 3, than for local ULIRGs, and are comparable to high redshift ones. We compare this evolution to the expected cosmic H2 abundance and the cosmic star formation history.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Bouwens, R. J., Illingworth, G. D., Franx, M., & Ford, H. 2008, ApJ, 686, 230CrossRefGoogle Scholar
Chung, A., Narayanan, G., Yun, M. S., Heyer, M., & Erickson, N. R. 2009, AJ, 138, 858CrossRefGoogle Scholar
Combes, F., García-Burillo, S., Braine, J.et al. 2006, A&A, 460, L49Google Scholar
Combes, F., García-Burillo, S., Braine, J.et al. 2011, A&A, 528, A124Google Scholar
Conselice, C. J., Yang, C., & Bluck, A. F. L. 2009, MNRAS, 394, 1956CrossRefGoogle Scholar
Daddi, E., Bournaud, F., Walter, F.et al. 2010 ApJ, 713, 686Google Scholar
Gao, Y. & Solomon, P. M. 2004 ApJS 152, 63CrossRefGoogle Scholar
Geach, J. E., Smail, I., Coppin, K.et al. 2009, MNRAS, 395, L62Google Scholar
Geach, J. E., Smail, I., Moran, S. M.et al. 2011, ApJ, 730, L19CrossRefGoogle Scholar
Genzel, R., Tacconi, L. J., Gracia-Carpio, J.et al. 2010, MNRAS, 407, 2091Google Scholar
Greve, T. R., Bertoldi, F., Smail, I.et al. 2005, MNRAS, 359, 1165CrossRefGoogle Scholar
Hopkins, A. M. & Beacom, J. F. 2006, ApJ, 651, 142Google Scholar
Iono, D., Wilson, C. D., Yun, M. S.et al. 2009, ApJ, 695, 1537Google Scholar
Kartaltepe, J. S., Sanders, D. B., Le Floc'h, E.et al. 2010, ApJ, 721, 98CrossRefGoogle Scholar
Kistler, M. D., Yüksel, H., Beacom, J. F.et al. 2009, ApJ, 705, L104Google Scholar
Leroy, A. K., Walter, F., Brinks, E.et al. 2008, AJ, 136, 2782CrossRefGoogle Scholar
Madau, P., Pozzetti, L., & Dickinson, M. E. 1998, ApJ, 498, 106CrossRefGoogle Scholar
Obreschkow, D., & Rawlings, S. 2009 ApJ, 696, L129Google Scholar
Saintonge, A., Kauffmann, G., Kramer, C.et al. 2011a, MNRAS, 415, 32CrossRefGoogle Scholar
Saintonge, A., Kauffmann, G., Wang, J.et al. 2011b, MNRAS, 415, 61Google Scholar
Solomon, P., Downes, D., Radford, S., & Barrett, J. 1997, ApJ, 478, 144Google Scholar
Solomon, P. & Vanden Bout, P. A. 2005, ARAA, 43, 677CrossRefGoogle Scholar
Tacconi, L. J., Genzel, R., Neri, R.et al. 2010, Nature, 463, 781Google Scholar