Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T03:09:15.380Z Has data issue: false hasContentIssue false

Star Formation and Gas Dynamics in Galactic Disks: Physical Processes and Numerical Models

Published online by Cambridge University Press:  27 April 2011

Eve C. Ostriker*
Affiliation:
Department of Astronomy, University of Maryland, College Park, MD 20742; email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Star formation depends on the available gaseous “fuel” as well as galactic environment, with higher specific star formation rates where gas is predominantly molecular and where stellar (and dark matter) densities are higher. The partition of gas into different thermal components must itself depend on the star formation rate, since a steady state distribution requires a balance between heating (largely from stellar UV for the atomic component) and cooling. In this presentation, I discuss a simple thermal and dynamical equilibrium model for the star formation rate in disk galaxies, where the basic inputs are the total surface density of gas and the volume density of stars and dark matter, averaged over ~kpc scales. Galactic environment is important because the vertical gravity of the stars and dark matter compress gas toward the midplane, helping to establish the pressure, and hence the cooling rate. In equilibrium, the star formation rate must evolve until the gas heating rate is high enough to balance this cooling rate and maintain the pressure imposed by the local gravitational field. In addition to discussing the formulation of this equilibrium model, I review the current status of numerical simulations of multiphase disks, focusing on measurements of quantities that characterize the mean properties of the diffuse ISM. Based on simulations, turbulence levels in the diffuse ISM appear relatively insensitive to local disk conditions and energetic driving rates, consistent with observations. It remains to be determined, both from observations and simulations, how mass exchange processes control the ratio of cold-to-warm gas in the atomic ISM.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Agertz, O., Lake, G., Teyssier, R., Moore, B., Mayer, L., & Romeo, A. B. 2009, MNRAS, 392, 294CrossRefGoogle Scholar
Audit, E. & Hennebelle, P. 2005, A&A, 433, 1Google Scholar
Audit, E. & Hennebelle, P. 2010, A&A, 511, A76+Google Scholar
Aumer, M., Burkert, A., Johansson, P. H., & Genzel, R. 2010, ApJ, 719, 1230CrossRefGoogle Scholar
Bournaud, F., Elmegreen, B. G., Teyssier, R., Block, D. L., & Puerari, I. 2010, arXiv:1007.2566Google Scholar
Bigiel, F., Leroy, A., Walter, F., Brinks, E., de Blok, W. J. G., Madore, B., & Thornley, M. D. 2008, AJ, 136, 2846CrossRefGoogle Scholar
Blitz, L. & Rosolowsky, E. 2006, ApJ, 650, 933CrossRefGoogle Scholar
de, M. A. & Breitschwerdt, D. 2005, A&A, 436, 585Google Scholar
Dib, S., Bell, E., & Burkert, A. 2006, ApJ, 638, 797CrossRefGoogle Scholar
Field, G. B., Goldsmith, D. W., & Habing, H. J. 1969, ApJL, 155, L149CrossRefGoogle Scholar
Gazol, A., Luis, L., & Kim, J. 2009, ApJ, 693, 656CrossRefGoogle Scholar
Gazol, A., Vázquez-Semadeni, E., & Kim, J. 2005, ApJ, 630, 911CrossRefGoogle Scholar
Heiles, C. 2001, Tetons 4: Galactic Structure, Stars and the Interstellar Medium, 231, 294Google Scholar
Hennebelle, P. & Audit, E. 2007, A&A, 465, 431Google Scholar
Joung, M. K. R. & Mac Low, M. 2006, ApJ, 653, 1266CrossRefGoogle Scholar
Joung, M. R., Mac Low, M., & Bryan, G. L. 2009, ApJ, 704, 137CrossRefGoogle Scholar
Kim, C.-G., Kim, W.-T., & Ostriker, E. C. 2006, ApJL, 649, L13CrossRefGoogle Scholar
Kim, C., Kim, W., & Ostriker, E. C. 2010, ArXiv e-printsGoogle Scholar
Kim, J. 2004, Journal of Korean Astronomical Society, 37, 237CrossRefGoogle Scholar
Kim, W. & Ostriker, E. C. 2007, ApJ, 660, 1232CrossRefGoogle Scholar
Kim, W.-T. & Ostriker, E. C. 2001, ApJ, 559, 70CrossRefGoogle Scholar
Koyama, H. & Ostriker, E. C. 2009 a, ApJ, 693, 1316CrossRefGoogle Scholar
Koyama, H. & Ostriker, E. C. 2009 b, ApJ, 693, 1346CrossRefGoogle Scholar
Leroy, A. K., Walter, F., Brinks, E., Bigiel, F., de Blok, W. J. G., Madore, B., & Thornley, M. D. 2008, AJ, 136, 2782CrossRefGoogle Scholar
Mac Low, M., Balsara, D. S., Kim, J., & de Avillez, M. A. 2005, ApJ, 626, 864CrossRefGoogle Scholar
McKee, C. F., & Ostriker, E. C. 2007, ARAA, 45, 565CrossRefGoogle Scholar
Ostriker, E. C., McKee, C. F., & Leroy, A. K. 2010, ApJ, 721, 975 (OML)CrossRefGoogle Scholar
Piontek, R. A. & Ostriker, E. C. 2005, ApJ, 629, 849CrossRefGoogle Scholar
Piontek, R. A. & Ostriker, E. C. 2007, ApJ, 663, 183CrossRefGoogle Scholar
Shetty, R. & Ostriker, E. C. 2008, ApJ, 684, 978CrossRefGoogle Scholar
Tasker, E. J. & Tan, J. C. 2009, ApJ, 700, 358CrossRefGoogle Scholar
Wada, K., Meurer, G., & Norman, C. A. 2002, ApJ, 577, 197CrossRefGoogle Scholar
Wang, P. & Abel, T. 2009, ApJ, 696, 96CrossRefGoogle Scholar
Wolfire, M. G., Hollenbach, D., McKee, C. F., Tielens, A. G. G. M., & Bakes, E. L. O. 1995, ApJ, 443, 152CrossRefGoogle Scholar
Wolfire, M. G., McKee, C. F., Hollenbach, D., & Tielens, A. G. G. M. 2003, ApJ, 587, 278CrossRefGoogle Scholar