Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T16:37:52.411Z Has data issue: false hasContentIssue false

Star Clusters in the Galactic tidal field, from birth to dissolution

Published online by Cambridge University Press:  11 March 2020

Bekdaulet Shukirgaliyev
Affiliation:
Energetic Cosmos Laboratory, Nazarbayev University, 53 Kabanbay batyr ave., 010000Nur-Sultan, Kazakhstanb email: [email protected] Fesenkov Astrophysical Institute, 23 Observatory str., 050020Almaty, Kazakhstan
Genevieve Parmentier
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr 12-14, D-69120Heidelberg, Germany
Peter Berczik
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr 12-14, D-69120Heidelberg, Germany National Observatories of China, Chinese Academy of Science, 20A Datun Rd, Chaoyang District, 100012Beijing, PR China Main Astronomical Observatory, Academy of Science of Ukraine, 27 Akademika Zabolotnoho St, 03680Kyiv, Ukraine
Andreas Just
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr 12-14, D-69120Heidelberg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the evolution of star clusters in the Galactic tidal field starting from their birth in molecular clumps. Our model clusters form according to the local-density-driven cluster formation model in which the stellar density profile is steeper than that of gas. As a result, clusters resist the gas expulsion better than predicted by earlier models.

We vary the impact of the Galactic tidal field λ, considering different Galactocentric distances (3-18 kpc), as well as different cluster sizes. Our model clusters survive the gas expulsion independent of λ.

We investigated the relation between the cluster mass at the onset of secular evolution and their dissolution time. The model clusters formed with a high star-formation efficiency (SFE) follow a tight mass-dependent dissolution relation, in agreement with previous theoretical studies. However, the low-SFE models present a shallower mass-dependent relation than high-SFE clusters, and most dissolve before reaching 1 Gyr (cluster teenage mortality).

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Baumgardt, H. & Kroupa, P. 2007, MNRAS, 380, 1589CrossRefGoogle Scholar
Baumgardt, H. & Makino, J. 2003, MNRAS, 340, 227CrossRefGoogle Scholar
Berczik, P., Spurzem, R., Wang, L., Zhong, S., & Huang, S. 2013, in The Third International Conference “High Performance Computing”, Kiyv, Ukraine, 52Google Scholar
Boutloukos, S. G. & Lamers, H. J. G. L. M. 2003, MNRAS, 338, 717CrossRefGoogle Scholar
Gieles, M., Portegies Zwart, S. F., Baumgardt, H., Athanassoula, E., Lamers, H. J. G. L. M., Sipior, M., & Leenaarts, J. 2006, MNRAS, 371, 793CrossRefGoogle Scholar
Gutermuth, R. A., Pipher, J. L., Megeath, S. T., Myers, P. C., Allen, L. E., & Allen, T. S. 2011, ApJ, 739, 84CrossRefGoogle Scholar
Higuchi, A. E., Kurono, Y., Saito, M., & Kawabe, R. 2009, ApJ, 705, 468CrossRefGoogle Scholar
Leisawitz, D., Bash, F. N., & Thaddeus, P. 1989, ApJS, 70, 731CrossRefGoogle Scholar
Krumholz, M. R., McKee, C. F., & Bland-Hawthorn, J. 2019, ARAA, 57, 227CrossRefGoogle Scholar
Lada, C. J. & Lada, E. A. 2003, ARAA, 41, 57CrossRefGoogle Scholar
Lamers, H. J. G. L. M., Gieles, M., Bastian, N., Baumgardt, H., Kharchenko, N. V., & Portegies Zwart, S. 2005, A&A, 441, 117Google Scholar
Leisawitz, D., Bash, F. N., & Thaddeus, P. 1989, ApJS, 70, 731CrossRefGoogle Scholar
Li, H., Gnedin, O. Y., Gnedin, N. Y., Meng, X., Semenov, V. A., & Kravtsov, A. V. 2017, ApJ, 834, 69CrossRefGoogle Scholar
Li, H., Vogelsberger, M., & Marinacci, F., 2019, MNRAS, 487, 364CrossRefGoogle Scholar
McMillan, P. J. & Dehnen, W. 2007, MNRAS, 378, 541CrossRefGoogle Scholar
Parmentier, G. & Pfalzner, S. 2013, A&A, 549, A132Google Scholar
Pfeffer, J., Kruijssen, J. M. D., Crain, R. A., & Bastian, N. 2018, MNRAS, 475, 4309CrossRefGoogle Scholar
Rahner, D., Pellegrini, E., Glover, S. C. O., & Klessen, R. S. 2019, MNRAS, 483, 2547CrossRefGoogle Scholar
Renaud, F. 2018, NewAR, 81, 1CrossRefGoogle Scholar
Shukirgaliyev, B., Parmentier, G., Berczik, P., & Just, A. 2017, A&A, 605, A119Google Scholar
Shukirgaliyev, B., Parmentier, G., Just, A., & Berczik, P. 2018, ApJ, 863, 171CrossRefGoogle Scholar
Shukirgaliyev, B., Parmentier, G., Berczik, P., & Just, A. 2019, MNRAS, 486, 1045CrossRefGoogle Scholar
Wall, J. E., McMillan, S. L. W., Mac Low, M.-M., Klessen, Ralf S., & Zwart, Portegies, Simon 2019, arXiv e-prints, arXiv:1901.01132Google Scholar