Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T10:34:14.407Z Has data issue: false hasContentIssue false

Star Cluster Life-times: Dependence on Mass, Radius and Environment

Published online by Cambridge University Press:  01 September 2007

Mark Gieles
Affiliation:
European Southern Observatory, Casilla 19001, Santiago 19, Chile email: [email protected]
Henny J. G. L. M. Lamers
Affiliation:
Astronomical Institute, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands email: [email protected]
Holger Baumgardt
Affiliation:
Argelander Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, Bonn, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The dissolution time (tdis) of clusters in a tidal field does not scale with the “classical” expression for the relaxation time. First, the scaling with N, and hence cluster mass, is shallower due to the finite escape time of stars. Secondly, the cluster half-mass radius is of little importance. This is due to a balance between the relative tidal field strength and internal relaxation, which have an opposite effect on tdis, but of similar magnitude. When external perturbations, such as encounters with giant molecular clouds (GMC) are important, tdis for an individual cluster depends strongly on radius. The mean dissolution time for a population of clusters, however, scales in the same way with mass as for the tidal field, due to the weak dependence of radius on mass. The environmental parameters that determine tdis are the tidal field strength and the density of molecular gas. We compare the empirically derived tdis of clusters in six galaxies to theoretical predictions and argue that encounters with GMCs are the dominant destruction mechanism. Finally, we discuss a number of pitfalls in the derivations of tdis from observations, such as incompleteness, with the cluster system of the SMC as particular example.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Baumgardt, H. 2001, MNRAS 325, 1323CrossRefGoogle Scholar
Baumgardt, H. & Makino, J. 2003, MNRAS 340, 227CrossRefGoogle Scholar
Boutloukos, S. G. & Lamers, H. J. G. L. M. 2003, MNRAS 338, 717Google Scholar
Chandar, R., Fall, S. M., & Whitmore, B. C. 2006, ApJ (Letters) 650, L111CrossRefGoogle Scholar
de Grijs, R. & Goodwin, S. P. 2007, MNRAS in press, astro-ph/0709.3781Google Scholar
Fukushige, T. & Heggie, D. C. 2000, MNRAS 318, 753Google Scholar
Gieles, M., Bastian, N., Lamers, H. J. G. L. M., & Mout, J. N. 2005, A&A 441, 949Google Scholar
Gieles, M. & Baumgardt, H. 2007, MNRAS to be submittedGoogle Scholar
Gieles, M., Lamers, H. J. G. L. M., & Portegies Zwart, S. F. 2007, ApJ 668, 268Google Scholar
Gieles, M., Portegies Zwart, S. F., Baumgardt, H., Athanassoula, E., Lamers, H. J. G. L. M., Sipior, M., & Leenaarts, J. 2006, MNRAS 371, 793Google Scholar
Heyer, M. H., Corbelli, E., Schneider, S. E., & Young, J. S. 2004, ApJ 602, 723CrossRefGoogle Scholar
Krienke, K. & Hodge, P. 2004, PASP 116, 497CrossRefGoogle Scholar
Lamers, H. J. G. L. M. & Gieles, M. 2006, A&A 455, L17Google Scholar
Lamers, H. J. G. L. M., Gieles, M., Bastian, N., Baumgardt, H., Kharchenko, N. V., & Portegies Zwart, S. F. 2005, A&A 441, 117Google Scholar
Lamers, H. J. G. L. M., Gieles, M., & Portegies Zwart, S. F. 2005, A&A 429, 173Google Scholar
Larsen, S. S. 2004, A&A 416, 537Google Scholar
Leroy, A., Bolatto, A., Stanimirovic, S., Mizuno, N., Israel, F., & Bot, C. 2007, ApJ 658, 1027CrossRefGoogle Scholar
Rafelski, M. & Zaritsky, D. 2005, AJ 129, 2701Google Scholar
Scheepmaker, R. A., Haas, M. R., Gieles, M., Bastian, N., Larsen, S. S., & Lamers, H. J. G. L. M. 2007, A&A 469, 925Google Scholar
Tanikawa, A. & Fukushige, T. 2005 PASJ 57, 155Google Scholar
van den Bergh, S. & McClure, R. D. 1980, A&A 88, 360Google Scholar