Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T17:49:49.377Z Has data issue: false hasContentIssue false

Stability of pulsar rotational and orbital periods

Published online by Cambridge University Press:  21 October 2010

Sergei Kopeikin*
Affiliation:
Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Millisecond and binary pulsars are the most stable astronomical standards of frequency. They can be applied to solving a number of problems in astronomy and time-keeping metrology including the search for a stochastic gravitational wave background in the early universe, testing general relativity, and establishing a new time-scale. The full exploration of pulsar properties requires that proper unbiased estimates of spin and orbital parameters of the pulsar be obtained. These estimates depend essentially on the random noise components present in pulsar timing residuals. The instrumental white noise has predictable statistical properties and makes no harm for interpretation of timing observations, while the astrophysical/geophyeical low-frequency noise corrupts them, thus, reducing the quality of tests of general relativity and decreasing the stability of the pulsar time scale.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

[1]Kramer, M. & Wex, N. 2009, Class. Quant. Grav., 26, 073001CrossRefGoogle Scholar
[2]Hobbs, G. B., Bailes, M., Bhat, N. D. R., Burke-Spolaor, S., Champion, D. J., Coles, W., Hotan, A., Jenet, F., Kedziora-Chudczer, L., Khoo, J., Lee, K. J., Lommen, A., Manchester, R. N., Reynolds, J., Sarkissian, J., van Straten, W., To, S., Verbiest, J. P. W., Yardley, D., & You, X. P. 2009, Publ. Astron. Soc. of Australia, 26, 103CrossRefGoogle Scholar
[3]Ilyasov, Yu. P., Kuzmin, A. D., Shabanova, T. V., & Shitov, Yu. P., 1989, Proc. Lebedev Phys. Inst., Moscow, 199, 149Google Scholar
[4]Ilyasov, Y. P., Kopeikin, S. M., Sazhin, M. V., & Zharov, V. E. 2007, Highlights of Astronomy, 14, 479Google Scholar
[5]Petit, G. & Tavella, P., 1996, Astron. Astrophys., 308, 290Google Scholar
[6]Ilyasov, Y. P., Kopeikin, S. M., & Rodin, A. E. 1998, Astron. Lett., 24, 228Google Scholar
[7]Edwards, R. T., Hobbs, G. B., & Manchester, R. N. 2006, Mon. Not. Roy. Astron. Soc., 372, 1549CrossRefGoogle Scholar
[8]Hobbs, G., Lyne, A., & Kramer, M. 2006, Chinese J. Astron. Astrophys. Suppl., 6, 169CrossRefGoogle Scholar
[9]Kopeikin, S. M. 1997, Mon. Not. Roy. Astron. Soc., 288, 129CrossRefGoogle Scholar
[10]Kopeikin, S. M. 1999, Mon. Not. Roy. Astron. Soc., 305, 563CrossRefGoogle Scholar
[11]Kopeikin, S. M. & Potapov, V. A. 2004, Mon. Not. Roy. Astron. Soc., 355, 395CrossRefGoogle Scholar
[12]Foster, R. S. & Backer, D. C. 1990, Astrophys. J., 361, 300CrossRefGoogle Scholar
[13]Manchester, R. N. 2008, AIP Conference Proceedings, 983, 584CrossRefGoogle Scholar
[14]Ilyasov, Y. P. 2006, Chinese J. Astron. Astrophys. Suppl., 6, 148CrossRefGoogle Scholar
[15]Hobbs, G. 2009, IAU Symposium #261. Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis 27 April - 1 May 2009 Virginia Beach, VA, USA. #11.03; BAAS, 41, 1103Google Scholar