Hostname: page-component-599cfd5f84-ncv4z Total loading time: 0 Render date: 2025-01-07T07:39:06.645Z Has data issue: false hasContentIssue false

Spots on Betelgeuse, what are they?

Published online by Cambridge University Press:  26 August 2011

Andrea K. Dupree*
Affiliation:
Smithsonian Astrophysical Observatory/Harvard-Smithsonian Center for Astrophysics 60 Garden Street, Cambridge, MA 02138USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The supergiant star Alpha Orionis (Betelgeuse) is the only star other than the Sun to be spatially resolved either through direct imaging or through reconstruction of interferometric observations. Centimeter-radio wavelength, infrared and ultraviolet images reveal a few bright hot spots in the photosphere and chromosphere that possess characteristics different from sunspots. Large photospheric spots on Betelgeuse appear to result from convective motions, consistent with radiative hydrodynamic modeling; the chromospheric hot spots may be produced by shock waves in the chromosphere excited by the convective motions or pulsation in the photosphere. Bright chromospheric spots that cluster around the pole of Betelgeuse could be a natural result of shock breakout in a rotating star.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Asida, S. M. & Tuchman, Y. 1995, Astrophys. J., 455, 286CrossRefGoogle Scholar
Auriére, M., Donati, J.-F., Konstantinova-Antova, R., Perrin, G., Petit, P., & Roudier, T. 2010, Astron. Astrophys, 516, L2CrossRefGoogle Scholar
Chiavassa, A., et al. 2010, Astron. Astrophys, 515, A12CrossRefGoogle Scholar
Chiavassa, A., Plez, B., Josselin, E., & Freytag, B. 2009, Astron. Astrophys, 506, 1351CrossRefGoogle Scholar
Dupree, A. K., Baliunas, S. L., Guinan, E. F., Hartmann, L., Nassiopoulos, G., & Sonneborn, G. 1987, Astrophys. J., 317, L85CrossRefGoogle Scholar
Dupree, A. K., Lobel, A., & Stefanik, R. 2010, to be submitted.Google Scholar
Dupree, A. K., Lobel, A., Young, P. R., Ake, T. B., Linsky, J. L., & Redfield, S. 2005, Astrophys. J., 622, 629CrossRefGoogle Scholar
Gilliland, R. L. & Dupree, A. K. 1996, Astrophys. J., 466, L29CrossRefGoogle Scholar
Gray, D. F. 2008, AJ, 135, 1450CrossRefGoogle Scholar
Harper, G. M. & Brown, A. 2003, in: Piskunov, N. E., Weiss, W. W., & Gray, D. F. (eds.), Modelling of Stellar Atmospheres, Proc. IAU Symposium No. 210 (San Francisco: ASP), CDROM, F11Google Scholar
Harper, G. M., Brown, A., & Guinan, E. F. 2008, AJ, 135, 1430CrossRefGoogle Scholar
Harper, G. M., Brown, A., & Lim, J. 2001, Astrophys. J., 531, 1073CrossRefGoogle Scholar
Haubois, X. et al. 2009, Astron. Astrophys, 508, 923CrossRefGoogle Scholar
Hebden, J. C. et al. 1986, Astrophys. J., 309, 745CrossRefGoogle Scholar
Kervella, P. et al. 2009, A&A, 504, 115Google Scholar
Lim, J., Carilli, C. L., White, S. M., Beasley, A. J., & Marson, R. G. 1998, Nature, 392, 575CrossRefGoogle Scholar
Lobel, A. & Dupree, A. K. 2000, Astrophys. J., 545, 454CrossRefGoogle Scholar
Lobel, A. & Dupree, A. K. 2001, Astrophys. J., 558, 815CrossRefGoogle Scholar
Lovy, D., Maeder, A., Noels, A., & Gabriel, M. 1984, Astron. Astrophys, 133, 307Google Scholar
Ohnaka, K., et al. 2009, Astron. Astrophys, 503, 183CrossRefGoogle Scholar
Schwarzschild, M. 1975, Astrophys. J., 195, 137CrossRefGoogle Scholar
Smith, M. A., Patten, B. M., & Goldberg, L. 1989, AJ, 98, 2233CrossRefGoogle Scholar
Steffen, M. & Freytag, B. 2007, Astron. Nachr., 328, 1054CrossRefGoogle Scholar
Stothers, R. & Leung, K. C. 1971, Astron. Astrophys, 10, 290Google Scholar
Uitenbroek, H., Dupree, A. K., & Gilliland, R. L. 1998, AJ, 116, 2501CrossRefGoogle Scholar