Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T04:45:55.009Z Has data issue: false hasContentIssue false

Spheroids scaling relations over cosmic time

Published online by Cambridge University Press:  01 August 2006

Tommaso Treu*
Affiliation:
Department of Physics, University of California, Santa Barbara, CA 93106-9530, USAemail:[email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I report on recent measurements of two scaling relations of spheroids in the distant universe, the Fundamental Plane, and the relation between lensing velocity dispersion and stellar velocity dispersion. The joint analysis of the two scaling relations indicates that the most massive (above ~1011.5M) spheroids are consistent with no evolution since z ~ 1 both in terms of star formation and internal structure. Furthermore their total mass density profile is on average well described by an isothermal sphere with no evidence for redshift evolution. At smaller masses the picture appears to be substantially different, as indicated by evidence for substantial recent star formation (as much as 20–40% of stellar mass formed since z ~ 1), and by hints of a reduced dark matter content at smaller masses. A larger sample of lenses extending to velocity dispersions below 200\kms, and to redshifts above >0.5 is needed to verify these trends.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Bolton, A., Burles, S. M., Koopmans, L. V. E., Treu, T., & Moustakas, L. M. 2005, ApJ, 624, L21CrossRefGoogle Scholar
Bolton, A., Burles, S. M., Koopmans, L. V. E., Treu, T., & Moustakas, L. M. 2006, ApJ, 638, 703CrossRefGoogle Scholar
Ciotti, L., Lanzoni, B., & Renzini, A. 1996, MNRAS, 282, 1CrossRefGoogle Scholar
di Serego Alighieri, S. 2005, A&A, 442, 125Google Scholar
Djorgovksi, S. G., Davis, M., 1987, ApJ, 313, 59CrossRefGoogle Scholar
Dressler, A., Lynden-Bell, D., Burstein, D., Davies, R. L., Faber, S. M., Terlevich, R, & Wegner, G. 1987, ApJ, 313, 42CrossRefGoogle Scholar
Franx, M. 1993, PASP, 105, 1058CrossRefGoogle Scholar
Jaffe, W. 1983, MNRAS, 202, 995CrossRefGoogle Scholar
Koopmans, L. V. E., & Treu, T. 2002, ApJ, 568, L5CrossRefGoogle Scholar
Koopmans, L. V. E., & Treu, T. 2003, ApJ, 583, 606CrossRefGoogle Scholar
Koopmans, L. V. E., Treu, T., Bolton, A. S., Burles, S., & Moustaks, L. A. 2006, ApJ, 649, 599CrossRefGoogle Scholar
Shields, G. A., Gebhardt, K., Salviander, S., Wills, B. J., Xie, B., Brotherton, M. S., Yuan, J., & Dietrich, M. 2003, ApJ, 583, 124CrossRefGoogle Scholar
Treu, T., & Koopmans, L. V. E. 2002, ApJ, 575, 87CrossRefGoogle Scholar
Treu, T., & Koopmans, L. V. E. 2003, MNRAS, 343, L29CrossRefGoogle Scholar
Treu, T., & Koopmans, L. V. E. 2004, ApJ, 611, 739CrossRefGoogle Scholar
Treu, T., Ellis, R. S., Liao, T.X., & van Dokkum, P.G. 2005, ApJ, 622, L5CrossRefGoogle Scholar
Treu, T. 2005, ApJ, 633, 174CrossRefGoogle Scholar
Treu, T., Koopmans, L. V. E., Bolton, A. S., Burles, S. C., & Moustakas, L. A. 2006, ApJ, 640, 662CrossRefGoogle Scholar
Treu, T., Stiavelli, M., Casertano, S., Møller, P., & Bertin, G. 1999, MNRAS, 308, 1037CrossRefGoogle Scholar
van der Wel, A., Franx, M., van Dokkum, P. G., Rix, H.-W., Illingworth, G. D., & Rosati, P. 2005, ApJ, 631, 145CrossRefGoogle Scholar
Woo, J.-H., Treu, T., Malkan, M. A., & Blandford, R. D. 2006, ApJ, 645, 900CrossRefGoogle Scholar