Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T18:37:51.025Z Has data issue: false hasContentIssue false

Spherical albedo of a Lommel-Seeliger scattering ellipsoidal asteroid

Published online by Cambridge University Press:  01 March 2016

Karri Muinonen
Affiliation:
Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, P.O. Box 64, FI-00014 U. Helsinki, Finland email: [email protected] Finnish Geospatial Research Institute, Geodeetinrinne 2, FI-02430 Masala, Finland
Olli Wilkman
Affiliation:
Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, P.O. Box 64, FI-00014 U. Helsinki, Finland email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We compute the spherical albedo for a Lommel-Seeliger scattering ellipsoidal asteroid with a realistic disk-integrated phase function. The spherical (or Bond) albedo gives the ratio of the fluxes incident on and scattered by an asteroid. Thus, it plays a key role in the determination of the flux absorbed and afterwards thermally emitted by the asteroid at longer wavelengths. We provide extensive computations for the spherical albedo of low-albedo and moderate-albedo asteroids by utilizing the analytical disk-integrated brightness of a Lommel-Seeliger ellipsoid. In doing so, we utilize realistic triaxial models of known asteroids as well as idealistic prolate or oblate models of substantial elongation or flatness, respectively. We show that the spherical albedos can vary significantly as a function of the rotational pole orientation, rotational phase, and the triaxial ellipsoidal shape: variations of the order of 5-10% are realistic, with a tendency to grow with increasing elongation or flatness of the shape.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Carbognani, A., Tanga, P., Cellino, A., Delbó, M., Mottola, S., & Marchese, E. 2012, Planet. Space Sci. 73, 80, doi:10.1016/j.pss.2011.12.002CrossRefGoogle Scholar
Cellino, A., Hestroffer, D., Tanga, P., Mottola, S. & Dell'Oro, A. 2009, Astron. Astrophys. 506, 935, doi:10.1051/0004-6361/200912134CrossRefGoogle Scholar
Cellino, A., Muinonen, K., Hestroffer, D., & Carbognani, A. 2015, Planet. Space Sci., 118, 221, doi:10.1016/j.pss.2015.09.004CrossRefGoogle Scholar
Chandrasekhar, S., 1960, Radiative Transfer (Dover, New York)Google Scholar
Drummond, J. D., Weidenshilling, S. J., Chapman, C. R., & Davis, D. R. 1988, Icarus 76, 19, doi:10.1016/0019-1035(88)90139-XCrossRefGoogle Scholar
Lumme, K. & Bowell, E. 1981, Astron. J. 86, 1694, doi:10.1086/113054CrossRefGoogle Scholar
Magnusson, P., Barucci, M. A., Drummond, J. D., Lumme, K., Ostro, S. J., Surdej, J., Taylor, R. C., & Zappalà, V. 1989, in: Binzel, R.P., Gehrels, T., & Matthews, M. S. (eds.), Asteroids II (Univ. of Arizona Press., Tucson), p. 66Google Scholar
Muinonen, K., Belskaya, I. N., Cellino, A., Delbò, M., Levasseur-Regourd, A.-C., Penttilä, A., & Tedesco, E. F. 2010, Icarus 209, 542, doi:10.1016/j.icarus.2010.04.003CrossRefGoogle Scholar
Muinonen, K. & Lumme, K. 2015, Astron. Astrophys., A23, doi:10.1051/0004-6361/201526456CrossRefGoogle Scholar
Muinonen, K., Wilkman, O., Cellino, A., Wang, X., & Wang, Y. 2015, Planet. Space Sci., 118, 227, doi:10.1016/j.pss.2015.09.005CrossRefGoogle Scholar
Penttilä, A., Muinonen, K., Shevchenko, V. G., & Wilkman, O. 2016, Planet. Space Sci., in press, doi:10.1016/j.pss.2015.08.010CrossRefGoogle Scholar
Shevchenko, V. G., Belskaya, I. N., Muinonen, K., Penttilä, A., Krugly, Y. N., Velichko, F. P., Chiorny, V. G., Slyusarev, I. C., Gaftonyuk, N. M., & Tereschenko, I. A. 2016, Planet. Space Sci., in pressGoogle Scholar
Torppa, J., Hentunen, V-P., Pääkkönen, P., Kehusmaa, P., & Muinonen, K. 2008, Icarus 198, 91, doi:10.1016/j.icarus.2008.07.014CrossRefGoogle Scholar
Wilkman, O., Muinonen, K., & Peltoniemi, J. I. 2015, Planet. Space Sci., 118, 250, doi:10.1016/j.pss.2015.06.004CrossRefGoogle Scholar