Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T16:34:22.308Z Has data issue: false hasContentIssue false

Spectrum and atmosphere models of irradiated transiting giant planets

Published online by Cambridge University Press:  01 May 2008

Ivan Hubeny
Affiliation:
Steward Observatory and Dept. of Astronomy, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721, USA email: [email protected]
Adam Burrows
Affiliation:
Dept. of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 0854, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that a consistent fit to observed secondary eclipse data for several strongly irradiated transiting planets demands a temperature inversion (stratosphere) at altitude. Such a thermal inversion significantly influences the planet/star contrast ratios at the secondary eclipse, their wavelength dependences, and, importantly, the day-night flux contrast during a planetary orbit. The presence of the thermal inversion/stratosphere seems to roughly correlate with the stellar flux at the planet. Such temperature inversions might be caused by an upper-atmosphere absorber whose exact nature is still uncertain.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Barman, T., Allard, F., & Hauschildt, P. (2001) ApJ, 556, 885CrossRefGoogle Scholar
Burrows, A. et al. 1997, ApJ 491, 875CrossRefGoogle Scholar
Burrows, A. & Sharp, C. 1999, ApJ 512, 843CrossRefGoogle Scholar
Burrows, A., Sudarsky, D., & Hubeny, I. 2004, ApJ, 609, 407CrossRefGoogle Scholar
Burrows, A., Hubeny, I., & Sudarsky, D. 2005, ApJ, 625, L135CrossRefGoogle Scholar
Burrows, A., Sudarsky, D., & Hubeny, I. 2006, ApJ, 650, 1140CrossRefGoogle Scholar
Burrows, A., Hubeny, I, Budaj, J., Knutson, H. A., & Charbonneau, D. 2007, ApJ, 668, L171CrossRefGoogle Scholar
Burrows, A., Budaj, J. & Hubeny, I. 2008a, ApJ, 678, 1436CrossRefGoogle Scholar
Charbonneau, D. et al. 2005, ApJ, 626, 523CrossRefGoogle Scholar
Deming, D., Seager, S., Richardson, L. J., & Harrington, J. 2005, Nature, 434, 740CrossRefGoogle Scholar
Deming, D., Harrington, L. J., Seager, S., Richardson, L. J. 2006, ApJ, 644, 560CrossRefGoogle Scholar
Fortney, J. J., Saumon, D., Marley, M. S., Lodders, K., & Freedman, R. S. 2006, ApJ, 642, 495CrossRefGoogle Scholar
Fortney, J. J., Lodders, K., Marley, M. S., & Freedman, R. S. 2008, ApJ, 678, 1419CrossRefGoogle Scholar
Harrington, L. J. et al. 2007, Nature, 447, 691CrossRefGoogle Scholar
Hubeny, I. 1988, Computer Phys. Commun., 52, 103CrossRefGoogle Scholar
Hubeny, I. & Lanz, T. 1995 ApJ, 439, 875CrossRefGoogle Scholar
Hubeny, I., Burrows, A., & Sudarsky, D. 2003, ApJ, 594, 1011CrossRefGoogle Scholar
Knutson, H. A., Charbonneau, D., Noyes, R. W., Brown, T. M., Gilliland, R. L. 2007, ApJ, 655, 564CrossRefGoogle Scholar
Knutson, H. A., Charbonneau, D., Allen, L. E., Burrows, A., Megeath, S. T. 2008 ApJ, 673, 526CrossRefGoogle Scholar
Konacki, M., Torres, G., Jha, S., & Sasselov, D. 2003, Nature, 421, 507CrossRefGoogle Scholar
Richardson, L. J., Deming, D., & Seager, S. 2003, ApJ, 597, 581CrossRefGoogle Scholar
Richardson, L. J., Deming, D., Horning, K., Seager, S., & Harrington, J. 2007, Nature, 445, 892CrossRefGoogle Scholar
Seager, S. & Sasselov, D. 1998 ApJ, 502, L157CrossRefGoogle Scholar
Sharp, C. & Burrows, A. 2007 ApJS, 168, 140CrossRefGoogle Scholar
Sudarsky Burrows, A., & Hubeny, I. 2003, ApJ, 588, 1121CrossRefGoogle Scholar
Sudarsky Burrows, A., & Pinto, P. 2000, ApJ, 538, 885CrossRefGoogle Scholar