Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T05:09:31.188Z Has data issue: false hasContentIssue false

Spectroscopy of γ Doradus stars

Published online by Cambridge University Press:  18 February 2014

E. Brunsden
Affiliation:
Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand email: [email protected]
K. R. Pollard
Affiliation:
Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand email: [email protected]
P. L. Cottrell
Affiliation:
Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand email: [email protected]
D. J. Wright
Affiliation:
Department of Astrophysics, University of New South Wales, Sydney, Australia
P. De Cat
Affiliation:
Royal Observatory of Belgium, Ringlaan 3, 1180 Brussel, Belgium
P. M. Kilmartin
Affiliation:
Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The musician programme at the University of Canterbury has been successfully identifying pulsation modes in many γ Doradus stars using hundreds of ground-based spectroscopic observations. This paper describes some of the successful mode identifications and emerging patterns of the programme. The hybrid γ Doradus/δ Scuti star HD 49434 remains an enigma, despite the analysis of more than 1700 multi-site high-resolution spectra. A new result for this star is apparently distinct line-profile variations for the γ Doradus and δ Scuti frequencies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Aerts, C., de Pauw, M., & Waelkens, C. 1992 A&A, 266, 294Google Scholar
Aerts, C., Cuypers, J., De Cat, P., et al. 2004 A&A, 415, 1079Google Scholar
Balona, L. A. 1986a, MNRAS, 219, 111CrossRefGoogle Scholar
Balona, L. A. 1986b, MNRAS, 220, 647Google Scholar
Balona, L. A. 1987, MNRAS, 224, 41CrossRefGoogle Scholar
Balona, L. A., Krisciunas, K., & Cousins, A. W. J. 1994, MNRAS, 270, 905Google Scholar
Balona, L. A., Böhm, T., Foing, B. H., et al. 1996, MNRAS, 281, 1315Google Scholar
Brunsden, E., Pollard, K. R., Cottrell, P. L., Wright, D. J. & De Cat, P. 2012a, MNRAS, 427, 2512Google Scholar
Brunsden, E., Pollard, K. R., Cottrell, P. L., Wright, D. J., De Cat, P., & Kilmartin, P. M. 2012b, MNRAS, 422, 3535CrossRefGoogle Scholar
Chapellier, E., Rodríguez, E., Auvergne, M., et al. 2011, A&A, 525, A23Google Scholar
Cousins, A. W. J. 1992, Observatory, 112, 53Google Scholar
Dupret, M.-A., Grigahcène, A., Garrido, R., De Ridder, J., Scuflaire, R., & Gabriel, M. 2005a, MNRAS, 360, 1143Google Scholar
Dupret, M.-A., Grigahcène, A., Garrido, R., Gabriel, M., & Scuflaire, R. 2005b, A&A, 435, 927Google Scholar
Mantegazza, L. 2000, ASP-CS, 210, 138Google Scholar
Moya, A., Suárez, J. C., Amado, P. J., Martin-Ruíz, S., & Garrido, R. 2005, A&A, 432, 189Google Scholar
Reese, D. R., Prat, V., Barban, C., van't Veer-Menneret, C., & MacGregor, K. B. 2013, A&A, 550, A77Google Scholar
Schrijvers, C., Telting, J. H., Aerts, C., Ruymaekers, E., & Henrichs, H. F. 1997, A&AS, 121, 343Google Scholar
Tarrant, N. J., Chaplin, W. J., Elsworth, Y. P., Spreckley, S. A., & Stevens, I. R. 2008, A&A, 492, 167Google Scholar
Tassoul, M. 1980, ApJS, 43, 469Google Scholar
Townsend, R. H. D. 2003, MNRAS, 343, 125CrossRefGoogle Scholar
Uytterhoeven, K., Mathias, P., Poretti, E., et al. 2008, A&A, 489, 1213Google Scholar
Zima, W. 2008, CoAst, 157, 387Google Scholar
Zima, W. 2009, A&A, 497, 827Google Scholar