Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T04:43:10.213Z Has data issue: false hasContentIssue false

Spectroscopic and spectrometric differentiation between abiotic and biogenic material on icy worlds

Published online by Cambridge University Press:  03 November 2010

Kevin P. Hand
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, MS 183-601, 4800 Oak Grove Drive, Pasadena, CA 91109 email: [email protected]
Christopher P. McKay
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035 email: [email protected]
Carl B. Pilcher
Affiliation:
NASA Astrobiology Institute, NASA Ames Research Center, Moffett Field, CA 94035 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The ability to differentiate abiotic organic material from material of a biological origin is a critical task for astrobiology. Mass spectrometry and spectroscopy provide key tools for advancing this task and are two techniques that provide useful and highly complementary compositional information independent of a specific biochemical pathway. Here we address some of the utility and limitations of applying these techniques to both orbital and in situ exploration of icy moons of the outer solar system.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

A'Hearn, M. S., Belton, M. S. J., Delamere, W. A., Kissel, J., Klaasen, K. P., McFadden, L. A., Meech, K. J., Melosh, H. J., Schultz, P. H., Sunshine, J. M. et al. 2005, Deep Impact: Excavating Comet Tempel 1. Science, 310 (5746): 258264Google Scholar
Anderson, J. D., Schubert, G., Jacobson, R. A., Lau, E. L., Moore, W. B., & Sjorgen, W. L. 1998, Europa's Differentiated Internal Structure: Inferences from Four Galileo Encounters. Science, 281 (5385): 20192022Google Scholar
Benner, S. A., Devine, K. G., Matveeva, L. N., & Powell, D. H. 2000, The missing organic molecules on mars. Proceedings of the National Academy of Sciences, 97 (6): 2425CrossRefGoogle ScholarPubMed
Bernstein, M. P., Sandford, S. A., Allamandola, L. J., Chang, S., & Scharberg, M. A. 1995, Organic Compounds Produced by Photolysis of Realistic Interstellar and Cometary Ice Analogs Containing Methanol. The Astrophysical Journal, 454: 327CrossRefGoogle Scholar
Biemann, K., Oro, J., Toulmin, P. III, Orgel, L. E., Nier, A. O., Anderson, D. M., Flory, D., Diaz, A. V., Rushneck, D. R., & Simmonds, P. G. 1977, The search for organic substances and inorganic volatile compounds in the surface of mars. Journal of Geophysical Research, 82CrossRefGoogle Scholar
Brown, R. H., Clark, R. N., Buratti, B. J., Cruikshank, D. P., Barnes, J. W., Mastrapa, R. M. E., Bauer, J., Newman, S., Momary, T., Baines, K. H., et al. 2006, Composition and Physical Properties of Enceladus' Surface. Science, 311 (5766): 14251428CrossRefGoogle ScholarPubMed
Capone, D. G., Popa, R., Flood, B., & Nealson, K. H. 2006, Follow the nitrogen. Science (Washington, D. C.), 312 (5774): 708709CrossRefGoogle ScholarPubMed
Carlson, R. W., Calvin, W. M., Dalton, J. B. III, Hansen, G. B., Hudson, R. L., Johnson, R. E., McCord, T. B., & Moore, M. H. 2009, Europa, chapter Europa's Surface Composition, pages 283327. University of Arizona PressGoogle Scholar
Chyba, C. & Sagan, C. 1987, Infrared emission by organic grains in the coma of comet Halley. Nature, 330 (6146): 350353CrossRefGoogle Scholar
Chyba, C. F. 2000, Energy for microbial life on Europa. Nature, 403 (6768): 381–2CrossRefGoogle ScholarPubMed
Chyba, C. F. & McDonald, G. D. 1995, The Origin of Life in the Solar System: Current Issues. Annual Review of Earth and Planetary Sciences, 23 (1): 215249Google Scholar
Cleland, C. E. & Chyba, C. F. 2002, Defining ‘life’. Origins of Life and Evolution of Biospheres, 32 (4): 387393Google Scholar
Cooper, J. F., Johnson, R. E., Mauk, B. H., Garrett, H. B., & Gehrels, N. 2001, Energetic Ion and Electron Irradiation of the Icy Galilean Satellites. Icarus, 149: 133159Google Scholar
Dalton, J. B., Mogul, R., Kagawa, H. K., Chan, S. L., & Jamieson, C. S. 2003, Near-infrared detection of potential evidence for microscopic organisms on Europa. Astrobiology, 3 (3): 505–29Google Scholar
De Duve, C. 2005, Singularities: Landmarks on the Pathways of Life. Cambridge University PressCrossRefGoogle Scholar
des Marais, D. J., Harwit, M. O., Jucks, K. W., Kasting, J. F., Lin, D. N. C., Lunine, J. I., Schneider, J., Seager, S., Traub, W. A., & Woolf, N. J. 2002, Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology, 2 (2): 153181Google Scholar
Figueredo, P. H., Greeley, R., Neuer, S., Irwin, L., & Schulze-Makuch, D. 2003, Locating Potential Biosignatures on Europa from Surface Geology Observations. Astrobiology, 3 (4): 851861CrossRefGoogle ScholarPubMed
Greeley, R., Chyba, C. F., Head, J. W. III, McCord, T. B., McKinnon, W. B., Pappalardo, R. T., & Figueredo, P. H. 2004, Geology of Europa. In Bagenal, F., Dowling, T. E., and McKinnon, W. B., editors, Jupiter. The planet, satellites and magnetosphere, chapter 15, pages 329362. Cambridge University Press, first editionGoogle Scholar
Hall, D. T., Strobel, D. F., Feldman, P. D., McGrath, M. A., & Weaver, H. A. 1995 Detection of an oxygen atmosphere on Jupiter's moon Europa. Nature, 373 (6516): 677679Google Scholar
Hand, K. P. 2007, On the Physics and Chemistry of the Ice Shell and Subsurface Ocean of Europa. PhD thesis, PhD Thesis, Department of Geological and Environmental Sciences, Stanford University, Stanford, CAGoogle Scholar
Hand, K. P. & Chyba, C. F. 2007, Empirical constraints on the salinity of the europan ocean and implications for a thin ice shell. Icarus, 189 (2): 424438Google Scholar
Hand, K. P., Carlson, R. W., & Chyba, C. F. 2007, Energy, chemical disequillibrium, and geological constraints Europa. Astrobiology, 7 (6): 10061022CrossRefGoogle Scholar
Hand, K. P., Chyba, C. F., Priscu, J. C., Carlson, R. W., & Nealson, K. H. 2009 Europa, chapter Astrobiology and the Potential for Life on Europa, pages 589629. University of Arizona PressGoogle Scholar
Hayashi, T. & Mukamel, S. 2007, Vibrational-Exciton Couplings for the Amide I, II, III, and A Modes of Peptides. J. Phys. Chem. B, 10.1021/jp070369b (111): 1103211046CrossRefGoogle Scholar
Joyce, G. F. 1995, The RNA world: Life before DNA and protein. In Zuckerman, B. and Hart, M., editors, Extraterrestrials: Where are they?, pages 139151. Cambridge University PressGoogle Scholar
Kargel, J. S., Kaye, J. Z., Head, J. W., Marion, G. M., Sassen, R., Crowley, J. K., Ballesteros, O. P., Grant, S. A., & Hogenboom, D. L. 2000, Europa's Crust and Ocean: Origin, Composition, and the Prospects for Life. Icarus, 148 (1): 226265CrossRefGoogle Scholar
Khurana, K. K., Kivelson, M. G., Stevenson, D. J., Schubert, G., Russell, C. T., Walker, R. J., & Polanskey, C. 1998, Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature, 395 (6704): 749751Google Scholar
Kiang, N. Y., Segura, A., Tinetti, G., Blankenship, R. E., Cohen, M., Siefert, J., Crisp, D., & Meadows, V. S. 2007, pectral signatures of photosynthesis. ii. coevolution with other stars and the atmosphere on extrasolar worlds. Astrobiology, 7 (1): 252274Google Scholar
Kiang, N. Y., Siefert, J., & Govindjee, B. R. E. 2007, Spectral signatures of photosynthesis. i. Astrobiology, 7 (1): 222251Google Scholar
Mancinelli, R. L. & Banin, A. 2004, Where is the nitrogen on Mars? International Journal of Astrobiology, 2 (03): 217225Google Scholar
Maquelin, K., Kirschner, C., Choo-Smith, L. P., van den Braak, N., Endtz, H., Naumann, D., & Puppels, J. P. 2002, Identification of medically relevant microorganisms by vibrational spectroscopy. Journal of Microbiological Methods, 51 (3): 255271Google Scholar
McCollom, T. M. 1999, Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. Journal of Geophysical Research, 104 (E12): 3072930742Google Scholar
McCollom, T. M., Ritter, G., & Simoneit, B. R. T. 1999, Lipid synthesis under hydrothermal conditions by fischer-tropsch-type reactions. Origins of Life and Evolution of Biospheres, 29 (2): 153166Google Scholar
McCord, T. B., Carlson, R. W., Smythe, W. D., Hansen, G. B., Clark, R. N., Hibbitts, C. A., Fanale, F. P., Granahan, J. C., Segura, M., Matson, D. L., et al. 1997, Organics and other molecules in the surfaces of Callisto and Ganymede. Science, 278 (5336): 271275CrossRefGoogle ScholarPubMed
McCord, T. B., Hansen, G. B., Martin, P. D., & Hibbitts, C. 1998, Non-water-ice constituents in the surface material of the icy Galilean satellites from the Galileo near-infrared mapping spectrometer investigation. Journal of Geophysical Research, 103 (E4): 86038626Google Scholar
McKay, C. P. 2004, What is life—and how do we search for it in other worlds? PLoS Biology, 2 (9)Google Scholar
Naumann, D., Schultz, C. P., & Helm, D. 1996, What can infrared spectroscopy tell us about the structure and composition of intact bacterial cells? In Mantsch, H. H. and Chapman, D., editors, Infrared Spectroscopy of Biomolecules, pages 279310. Wiley-Liss: New YorkGoogle Scholar
NRC. New Frontiers in the Solar System an Integrated Exploration Strategy. National Academies Press, 2003.Google Scholar
Painter, T. H., Duval, B., Thomas, W. H., Mendez, M., Heintzelman, S., & Dozier, J. 2001, Detection and Quantification of Snow Algae with an Airborne Imaging Spectrometer. Applied and Environmental Microbiology, 67 (11): 52675272Google Scholar
Pappalardo, R. T. & Head, J. W. III 2001, The Thick-Shell Model of Europa's Geology: Implications for Crustal Processes. 32nd Annual Lunar and Planetary Science Conference, March 12-16, 2001, Houston, Texas, abstract no. 1866Google Scholar
Pappalardo, R. T., Head, J. W., Greeley, R., Sullivan, R. J., Pilcher, C., Schubert, G., Moore, W. B., Carr, M. H., Moore, J. M., Belton, M. J. et al. 1998 Geological evidence for solid-state convection in Europa's ice shell. Nature, 391 (6665): 365368CrossRefGoogle ScholarPubMed
Peters, K. E., Walters, C. C., & Moldowan, J. M. 2005, The Biomarker Guide Vol. II: Biomarkers and isotopes in petroleum systems and Earth history. Cambridge University PressGoogle Scholar
Phillips, C. B., McEwen, A. S., Hoppa, G. V., Fagents, S. A., Greeley, R., Klemaszewski, J. E., Pappalardo, R. T., Klaasen, K. P., & Breneman, H. H. 2000, The search for current geologic activity on Europa. Journal of Geophysical Research, 105 (E9): 2257922598Google Scholar
Pilcher, C. B. 2003, Biosignatures of early earths. Astrobiology, 3 (3): 471486CrossRefGoogle ScholarPubMed
Sagan, C., Thompson, W. R., Carlson, R., Gurnett, D., & Hord, C. 1993, A search for life on Earth from the Galileo spacecraft. Nature, 365 (6448): 715721Google Scholar
Schubert, G., Anderson, J. D., Spohn, T., & McKinnon, W. B. 2004, Interior composition, structure and dynamics of the Galilean satellites, pages 281306. Cambirdge University PressGoogle Scholar
Summons, R. E., Albrecht, P., McDonald, G., & Moldowan, J. M. 2008, Molecular biosignatures. Space Science Reviews, 135 (1): 133159CrossRefGoogle Scholar
Zimmer, C., Khurana, K. K., & Kivelson, M. G. 2000, Subsurface oceans on Europa and Callisto: constraints from Galileo magnetometer observations. Icarus, 147 (2): 329347Google Scholar
Zolotov, M. Y. & Shock, E. L. 2004 A model for low-temperature biogeochemistry of sulfur, carbon, and iron on Europa. J. Geophys. Res, 109: 2003JE002194Google Scholar