Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-04T19:47:05.306Z Has data issue: false hasContentIssue false

The spectral evolution of cool white dwarfs

Published online by Cambridge University Press:  09 October 2020

Simon Blouin
Affiliation:
Los Alamos National Laboratory, P.O. Box 1663, Mail Stop B265, Los Alamos, NM87545, USA email: [email protected]
Patrick Dufour
Affiliation:
Département de physique, Université de Montréal, Montréal, QC H3C 3J7, Canada email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Empirically characterizing the spectral evolution of cool white dwarfs is a prerequisite to understanding the physical processes that shape the evolution of these old objects. However, the high photospheric densities of cool helium-rich atmospheres seriously complicate the study of those stars. We have recently developed an updated atmosphere code that is appropriate for high densities and that can model any cool white dwarf (including DZs and DQpecs). Here, we present recent advances in our understanding of the spectral evolution of cool white dwarfs that were made possible thanks to these improved models. We discuss in particular the evolution of the hydrogen-rich to helium-rich ratio at low effective temperatures as well as the DQ→ DQpec transition.

Type
Contributed Papers
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© International Astronomical Union 2020

References

Bergeron, P., Ruiz, M. T., & Leggett, S. K. 1997, ApJ, 108, 339Google Scholar
Bergeron, P., Leggett, S. K., & Ruiz, M. T. 2001, ApJ, 133, 413Google Scholar
Bergeron, P., Dufour, P., Fontaine, G., Coutu, S., Blouin, S., Genest-Beaulieu, C., Bédard, A., & Rolland, B. 2019, ApJ, 876, 67CrossRefGoogle Scholar
Blouin, S., Dufour, P., & Allard, N. F. 2018, ApJ, 863, 184CrossRefGoogle Scholar
Blouin, S., Dufour, P., Thibeault, C., & Allard, N. F. 2019, ApJ, 878, 63CrossRefGoogle Scholar
Blouin, S. & Dufour, P. 2019, MNRAS (in press)Google Scholar
Coutu, S., Dufour, P., Bergeron, P., Blouin, S., Loranger, E., Allard, N. F., & Dunlap, B. H. 2019, ApJ, 885, 74CrossRefGoogle Scholar
Cunningham, T., Tremblay, P.-E., Gentile Fusillo, N. P., Hollands, M. A., & Cukanovaite, E. 2019, eprintarXiv:1911.00014Google Scholar
Fontaine, G. & Brassard, P. 2005, in Koester D., Moehler, S., eds, Astronomical Society of the Pacific Conference Series Vol. 334, 14th European Workshop on White Dwarfs. p. 49Google Scholar
Kilic, M., Kowalski, P. M., & von Hippel, T. 2009, ApJ, 138, 102CrossRefGoogle Scholar
Kilic, M., Leggett, S. K., Tremblay, P.-E., von Hippel, T., Bergeron, P., Harris, H. C., Munn, J. A., Williams, K. A., Gates, E., & Farihi, J. 2010, ApJS, 190, 77CrossRefGoogle Scholar
Koester, D. & Kepler, S. O. 2019, A&A, 628, 102Google Scholar
Kowalski, P. M. 2006, PhD thesis, Vanderbilt UniversityGoogle Scholar
Kowalski, P. M. 2010, A&A, 519, 8Google Scholar
Limoges, M.-M., Bergeron, P., & Lépine, S. 2015, ApJS, 219, 19CrossRefGoogle Scholar
Tremblay, P.-E., Fontaine, G., Gentile Fusillo, N. P., Dunlap, B. H., Gänsicke, B. T., Hollands, M. A., Hermes, J. J., Marsh, T. R., Cukanovaite, E., & Cunningham, T. 2019, Nature, 565, 202CrossRefGoogle Scholar