Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T08:50:20.169Z Has data issue: false hasContentIssue false

Spatially resolved stellar mass buildup and quenching in massive disk galaxies over the last 10 Gyr revealed with spatially resolved SED fitting

Published online by Cambridge University Press:  10 June 2020

Abdurro’uf
Affiliation:
Astronomical Institute, Tohoku University, Aramaki, Aoba, Sendai 980-8578, Japan email: [email protected] Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan
Masayuki Akiyama
Affiliation:
Astronomical Institute, Tohoku University, Aramaki, Aoba, Sendai 980-8578, Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Despite decreasing cosmic star formation rate density over the last 10 Gyr, the stellar mass (M*) buildups in galaxies were still progressing during this epoch. About 50% of the current M* density in the universe was built over the last ∼8.7 Gyr. In this research, we investigated the stellar mass buildup and quenching of spatially resolved regions within massive disk galaxies over the last 10 Gyr. We apply the spectral energy distribution (SED) fitting method to SEDs of sub-galactic regions in galaxies to derive the spatially resolved distributions of SFR and M* in the galaxies. This namely pixel-to-pixel SED fitting method is applied to massive disk galaxies at 0.01 < z < 0.02 and 0.8 < z < 1.8. We found that massive disk galaxies tend to build their M* and quench their star formation progressively from the central region to the outskirts, i.e. inside-out stellar mass buildup and quenching.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Abdurro’uf & Akiyama M. 2017, MNRAS, 469, 280610.1093/mnras/stx936CrossRefGoogle Scholar
Abdurro’uf & Akiyama M. 2018, MNRAS, 479, 5083CrossRefGoogle Scholar
Abramson, L. E., Kelson, D. D., Dressler, A., Poggianti, B., Gladders, M. D., Oemler, A., & Jr, Vulcani, B., et al. 2014, ApJ, 785, L36CrossRefGoogle Scholar
Belfiore, F., Maiolino, R., Bundy, K., Masters, K., Bershady, M., Oyarzún, G. A., Lin, L., Cano-Diaz, M., et al. 2018, MNRAS, 477, 3014CrossRefGoogle Scholar
Birnboim, Y. & Dekel, A. 2003, MNRAS, 345, 349CrossRefGoogle Scholar
Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000CrossRefGoogle Scholar
Calzetti, D., Armus, L., Bohlin, R. C., Kinney, A. L., Koornneef, J., Storchi-Bergmann, T., et al. 2000, ApJ, 533, 68210.1086/308692CrossRefGoogle Scholar
Chabrier, G. 2003, PASP, 115, 763CrossRefGoogle Scholar
Peng, Y., Maiolino, R., & Cochrane, R., 2015, Nature, 521, 192CrossRefGoogle Scholar
Schawinski, K., Urry, C. M., Simmons, B. D., Fortson, L., Kaviraj, S., Keel, W. C., Lintott, C. J., Masters, K. L., et al. 2014, MNRAS, 440, 889CrossRefGoogle Scholar
Speagle, J. S., Steinhardt, C. L., Capak, P. L., Silverman, J. D., et al. 2014, ApJS, 214, 1510.1088/0067-0049/214/2/15CrossRefGoogle Scholar