Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T19:54:54.927Z Has data issue: false hasContentIssue false

Spatially Resolved Spectroscopy to Confirm or Disprove Dual Active Galactic Nuclei

Published online by Cambridge University Press:  25 July 2014

Rosalie C. McGurk
Affiliation:
Astronomy Department and UCO-Lick Observatory, University of California, Santa Cruz, CA 95064, USA, Postbus 80000, NL-3508TA, Utrecht, the Netherlands email: [email protected], [email protected]
Claire E. Max
Affiliation:
Astronomy Department and UCO-Lick Observatory, University of California, Santa Cruz, CA 95064, USA, Postbus 80000, NL-3508TA, Utrecht, the Netherlands email: [email protected], [email protected]
Anne Medling
Affiliation:
Research School of Astronomy and Astrophysics, Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611, Australia email: [email protected]
Gregory A. Shields
Affiliation:
Astronomy Department, University of Texas, Austin, TX 78712, USA; email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

When galaxies merge, gas accretes onto both central supermassive black holes. Thus, one expects to see dual active galactic nuclei (AGNs) in a fraction of galaxy mergers. Candidates for galaxies containing dual AGNs have been identified by the presence of double-peaked narrow [O III] emission lines and by high spatial resolution images of close galaxy pairs. 30% of double-peaked narrow [OIII] emission line SDSS AGNs have two spatial components within a 3″ radius. However, spatially resolved spectroscopy is needed to confirm these galaxy pairs as systems with double AGNs. With the Keck 2 Laser Guide Star Adaptive Optics system and the OSIRIS near-infrared integral field spectrograph, we obtained spatially resolved spectra for SDSS J095207.62+255257.2, confirming that it contains a Type 1 and a Type 2 AGN separated by 4.8 kpc (=1.0″). We performed similar integral field and long-slit spectroscopy observations of more spatially separated candidate dual AGNs and will report on the varied results. By assessing what fraction of radio-quiet double-peaked emission line SDSS AGNs are true dual AGNs, we can better constrain the statistics of dual AGNs and characterize physical conditions throughout these interacting AGNs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Bonning, E. W., Shields, G. A., & Salviander, S. 2007, ApJL, 666, L13Google Scholar
Fu, H., Myers, A. D., Djorgovski, S. G., & Yan, L. 2011, ApJ, 733, 103Google Scholar
Fu, H., Yan, L., Myers, A. D., Stockton, A., Djorgovski, S. G., Aldering, G., & Rich, J. A. 2012, ApJ, 745, 67Google Scholar
Green, P. J., Myers, A. D., Barkhouse, W. A., Mulchaey, J. S., Bennert, V. N., Cox, T. J., & Aldcroft, T. L. 2010, ApJ, 710, 1578CrossRefGoogle Scholar
Hennawi, J. F., Myers, A. D., Shen, Y., Strauss, M. A., Djorgovski, S. G., Fan, X., Glikman, E., Mahabal, A., Martin, C. L., Richards, G. T., Schneider, D. P., & Shankar, F. 2010, ApJ, 719, 1672Google Scholar
Hernquist, L. 1989, Nature, 340, 687Google Scholar
Hopkins, P. F., Hernquist, L., Cox, T. J., & Kereš, D. 2008, ApJS, 175, 356Google Scholar
Kauffmann, G. & Haehnelt, M. 2000, MNRAS, 311, 576Google Scholar
Larkin, J., Barczys, M., Krabbe, A., Adkins, S., Aliado, T., Amico, P., Brims, G., Campbell, R., Canfield, J., Gasaway, T., Honey, A., Iserlohe, C., Johnson, C., Kress, E., LaFreniere, D., Lyke, J., Magnone, K., Magnone, N., McElwain, M., Moon, J., Quirrenbach, A., Skulason, G., Song, I., Spencer, M., Weiss, J., & Wright, S. 2006, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 6269, 62691AGoogle Scholar
Liu, X., Shen, Y., Strauss, M. A., & Greene, J. E. 2010, ApJ, 708, 427Google Scholar
McGurk, R. C., Max, C. E., Rosario, D. J., Shields, G. A., Smith, K. L., & Wright, S. A. 2011, ApJL, 738, 2CrossRefGoogle Scholar
Rodríguez-Ardila, A., Riffel, R., & Carvalho, E. A. 2008, in Revista Mexicana de Astronomia y Astrofisica Conference Series, Vol. 32, 77–79Google Scholar
Rosario, D. J., McGurk, R. C., Max, C. E., Shields, G. A., & Smith, K. L. 2011, ApJ, 739, 44CrossRefGoogle Scholar
Rosario, D. J., Shields, G. A., Taylor, G. B., Salviander, S., & Smith, K. L. 2010, ApJ, 716, 131Google Scholar
Rupke, D. S. N. & Veilleux, S. 2013, ApJL, 775, 15CrossRefGoogle Scholar
Smith, K. L., Shields, G. A., Bonning, E. W., McMullen, C. C., Rosario, D. J., & Salviander, S. 2010, ApJ, 716, 866Google Scholar
Wang, J.-M., Chen, Y.-M., Hu, C., Mao, W.-M., Zhang, S., & Bian, W.-H. 2009, ApJL, 705, L76CrossRefGoogle Scholar
Wizinowich, P. L., Le Mignant, D., Bouchez, A. H., Campbell, R. D., Chin, J. C. Y., Contos, A. R., van Dam, M. A., Hartman, S. K., Johansson, E. M., Lafon, R. E., Lewis, H., Stomski, P. J., Summers, D. M., Brown, C. G., Danforth, P. M., Max, C. E., & Pennington, D. M. 2006, PASP, 118, 297CrossRefGoogle Scholar
Wright, S. A. 2011, private communicationGoogle Scholar