Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-12-03T19:42:37.073Z Has data issue: false hasContentIssue false

Spatially resolved dust-to-gas mass ratios in nearby galaxies

Published online by Cambridge University Press:  10 June 2020

Basilio Solís-Castillo
Affiliation:
Argelander Institute for Astronomy, University of Bonn, Auf dem Hügel 71, D-53121 Bonn, Germany email: [email protected] Max-Planck Institute for Radio Astronomy, Auf dem Hügel 69, D-53121 Bonn, Germany
Marcus Albrecht
Affiliation:
Argelander Institute for Astronomy, University of Bonn, Auf dem Hügel 71, D-53121 Bonn, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We analyse the dust-to-gas mass ratio (DGR) in nearby galaxies on kiloparsec scales. We focus on their dependence on metallicity and the CO-to-H2 conversion factor, αco. We use a sample of 25 nearby galaxies from SINGS and combine our data with CO (2-1) and H I observations from the HERACLES and THINGS surveys. We implement a Hierarchical Bayesian method to derive the dust mass via fitting the infrared data from 100 to 500 μm with a single modified blackbody. We find that the DGR-metallicity relation follows a power law and we study its strong dependency on the conversion factor αco. Our results indicate a strong connection between interstellar dust and gas. The resolved DGR-metallicity relation cannot be represented with a single power law. The scatter in this relation shows the strong impact of several processes that take place in every galaxy.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Aniano, G., Draine, B. T., Calzetti, D., Dale, D. A., Engelbracht, C. W., Gordon, K. D., Hunt, L. K., Kennicutt, R. C., et al. 2012, ApJ, 756, 138CrossRefGoogle Scholar
Bolatto, A. D., Wolfire, M., & Leroy, A. K. 2013, ARAA, 51, 207CrossRefGoogle Scholar
Chung, A., van Gorkom, J. H., Kenney, J. D. P., Crowl, H., & Vollmer, B. 2009, AJ, 138, 1741CrossRefGoogle Scholar
Galametz, M., Madden, S. C., Galliano, F., Hony, S., Bendo, G. J., & Sauvage, M. 2011, A&A, 532, A56Google Scholar
Kelly, B. C., Shetty, R., Stutz, A. M., Kauffmann, J., Goodman, A. A., & Launhardt, R. 2012, ApJ, 752, 55CrossRefGoogle Scholar
Kennicutt, R. C. Jr., Armus, L., Bendo, G., Calzetti, D., Dale, D. A., Draine, B. T., Engelbracht, C. W., Gordon, K. D., et al. 2003, PASP, 115, 928CrossRefGoogle Scholar
Kennicutt, R. C., Calzetti, D., Aniano, G., Appleton, P., Armus, L., Beirão, P., Bolatto, A. D., Brandl, B., et al. 2011, PASP, 123, 134710.1086/663818CrossRefGoogle Scholar
Leroy, A. K., Walter, F., Bigiel, F., Usero, A., Weiss, A., Brinks, E., de Blok, W. J. G., Kennicutt, R. C., et al. 2009, AJ, 137, 4670CrossRefGoogle Scholar
Moustakas, J., Kennicutt, R. C. Jr., Tremonti, C. A., Dale, D. A., Smith, J. D. T., & Calzetti, D. 2010, ApJS, 190, 233CrossRefGoogle Scholar
Rémy-Ruyer, A., Madden, S. C., Galliano, F., Galametz, M., Takeuchi, T. T., Asano, R. S., Zhukovska, S., Lebouteiller, V., et al. 2014, A&A, 563, A31Google Scholar
Sandstrom, K. M., Leroy, A. K., Walter, F., Bolatto, A. D., Croxall, K. V, Draine, B. T., Wilson, C. D., Wolfire, M., et al. 2013, ApJ, 777, 5CrossRefGoogle Scholar
Shetty, R., Roman-Duval, J., Hony, S., Cormier, D., Klessen, R. S., Konstandin, L. K., Loredo, T., Pellegrini, et al. 2016, MNRAS, 460, 67CrossRefGoogle Scholar
Schruba, A., Leroy, A. K., Walter, F., Bigiel, F., Brinks, E., de Blok, W. J. G., Kramer, C., Rosolowsky, E., et al. 2012, AJ, 143, 138CrossRefGoogle Scholar
Schruba, A., Bialy, S., & Sternberg, A. 2018, ApJ, 862, 110CrossRefGoogle Scholar
Walter, F., Brinks, E., de Blok, W. J. G., Bigiel, F., Kennicutt, R. C. Jr., Thornley, M. D., & Leroy, A. 2008, AJ, 136, 2563CrossRefGoogle Scholar