Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T21:45:05.419Z Has data issue: false hasContentIssue false

Spatial Distribution of the Gamma-ray Bursts and the Cosmological Principle

Published online by Cambridge University Press:  23 June 2017

Attila Mészáros*
Affiliation:
Charles University, Faculty of Mathematics and Physics, Astronomical Institute, V Holešovičkách 2, Prague 8, Czech Republic, email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Cosmological Principle claims that in the large scale average the visible parts of the universe are isotropic and homogeneous. In year 1998 the author, together with his two colleagues, discovered that the BATSE’s short gamma-ray bursts are not distributed isotropically on the sky. This first discovery was followed by other ones confirming both the existence of anisotropies in the angular distribution of bursts and the existence of huge Gpc structures in the spatial distribution. All this means that these anisotropies should reject the Cosmological Principle, because the large scale averaging hardly can be provided. This was claimed in year 2009. The aim of this contribution is to survey these publications since 1998 till today.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Balázs, L. G., Mészáros, A., & Horváth, I. 1998, A&A, 339, 1 Google Scholar
Balázs, L. G., et al. 1999, A&AS, 138, 417 Google Scholar
Balázs, L. G., et al. 2015, MNRAS, 452, 2236 Google Scholar
Birch, P. 1982, Nature, 298, 451 Google Scholar
Carroll, S. M., Press, W. H., & Turner, E. L. 1992, ARAA, 30, 499 Google Scholar
Clowes, R. G., et al. 2013, MNRAS, 429, 2910 CrossRefGoogle Scholar
Collins, C. B. & Hawking, S. W. 1973, MNRAS, 162, 307 Google Scholar
Horváth, I., Hakkila, J., & Bagoly, Z. 2014, A&A, 561, L12 Google Scholar
Horváth, I., et al. 2015, A&A, 584, A48 Google Scholar
Mészáros, A., Bagoly, Z, & Vavrek, R. 2000a, A&A, 354, 1 Google Scholar
Mészáros, A., et al. 2000b, ApJ, 539, 98 Google Scholar
Mészáros, A. & Štoček, J. 2003, A&A, 403, 443 Google Scholar
Mészáros, A., et al., (2009a) Baltic Astronomy, 18, 293 Google Scholar
Mészáros, A., et al., (2009b) Sixth Huntsville GRB Symposium, AIP Conf. Proc., 1133, 483 Google Scholar
Peebles, P. J. E. 1993, Principles of Physical Cosmology (Princeton University Press, Princeton)Google Scholar
Rudnick, L., Brown, S., & Williams, L. R. 2007, ApJ, 671, 40; Errata: ApJ, 678, 1531 (2008)Google Scholar
Sokolov, I. V., et al. 2015, Quark Phase Transition in Compact Objects, SAO RAS, Russia, 111Google Scholar
Tegmark, M., et al. (1996), ApJ, 468, 214 Google Scholar
Ukwatta, T. N. & Woźniak, P. R. 2016, MNRAS, 455, 703 Google Scholar
Vavrek, R., et al. 2008, MNRAS, 391, 1741 Google Scholar
Verkhodanov, O. V., Sokolov, V. V., & Khabibullina, M. L. 2015, Quark Phase Transition in Compact Objects, SAO RAS, Russia, 142Google Scholar
Weinberg, S. 1972, Gravitation and Cosmology (Wiley, J., New York - London - Sydney - Toronto)Google Scholar
Yadav, J. K., Bagla, J. S., & Khandai, N. 2010, MNRAS, 405, 2009 Google Scholar