Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-12-01T00:27:51.674Z Has data issue: false hasContentIssue false

Space Weathering of S-Complex Asteroids Manifested in the UV/Blue: Recent Insights and Future Directions

Published online by Cambridge University Press:  01 March 2016

Faith Vilas
Affiliation:
Planetary Science Institute, 1700 E. Fort Lowell Rd., Suite 106, Tucson, AZ 85719USA email: [email protected]
Amanda R. Hendrix
Affiliation:
Planetary Science Institute, 1700 E. Fort Lowell Rd., Suite 106, Tucson, AZ 85719USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Space weathering affects reflectance spectra of the Moon and S-complex asteroids by spectral bluing (increasing reflectance with decreasing wavelength) of their surface materials at UV/blue (less than 400 nm) wavelengths. This spectral bluing is attributed to a degradation of the UV absorption feature seen in spectral reflectance of olivine as a result of the creation of nanophase (npFe0) iron. We have modeled the effect of the addition of small amounts of npFe0 intimately mixed with particles from a hypothetical material and a terrestrial basalt. The addition of 0.0001% npFe0 affects the reflectance at these UV/blue wavelengths, while the addition of 0.01% is required to see the visible/near infrared reddening and diminution of VNIR absorption features. Thus, the UV/blue spectral reflectance characteristics allow earlier detection of the onset of space weathering effects.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Chapman, C. R. 1996, Meteorit. Planet. Sci., 31, 699CrossRefGoogle Scholar
Flynn, B. C., Vallerga, J. V., Gladstone, G. R., & Edelstein, J. 1998, Geophys. Res. Lett., 25, 3253CrossRefGoogle Scholar
Hapke, B. 2001, J. Geophys. Res., 106, 10039CrossRefGoogle Scholar
Hendrix, A. R. & Vilas, F. 2006, Astron. J., 132, 1396CrossRefGoogle Scholar
Keller, L. P. & Berger, E. L. 2014, LPI Contributions, 1800, 5088Google Scholar
Loeffler, M. J., Dukes, C. A., & Baragiola, R. A. 2009, J. Geophys. Res., 114, E03003Google Scholar
Lucke, R. L., Henry, R. C., & Fastie, W. G. 1974, Lunar and Planetary Science Conference, 5, 469Google Scholar
Nakamura, T., Noguchi, T., Tsuchiyama, A., et al. 2011, AGU Fall Meeting Abstracts, A2Google Scholar
Noble, S. K., Pieters, C. M., Taylor, L. A., et al. 2001, Meteorit. Planet. Sci., 36, 31CrossRefGoogle Scholar
Noguchi, T., Nakamura, T., Kimura, M., et al. 2011, Science, 333, 1121CrossRefGoogle Scholar
Noguchi, T., Kimura, M., Hashimoto, T., et al. 2014, Meteorit. Planet. Sci., 49, 188CrossRefGoogle Scholar
Pieters, C. M., Fischer, E. M., Rode, O., & Basu, A. 1993, J. Geophys. Res., 98, 20817CrossRefGoogle Scholar
Thompson, M. S., Christoffersen, R., Zega, T. J., & Keller, L. P. 2014, Earth, Planets, and Space, 66, 89CrossRefGoogle Scholar
Vilas, F. & Hendrix, A. R. 2015a, Astron. J., 150, 64CrossRefGoogle Scholar
Vilas, F., Hendrix, A. R., & Jensen, E. A. 2015b, Planet. Space Sci., in pressGoogle Scholar
Wagner, J. K., Hapke, B. W., & Wells, E. N. 1987, Icarus, 69, 14CrossRefGoogle Scholar