Hostname: page-component-599cfd5f84-2stsh Total loading time: 0 Render date: 2025-01-07T06:16:56.206Z Has data issue: false hasContentIssue false

Solenoidal versus compressive turbulence forcing

Published online by Cambridge University Press:  21 October 2010

C. Federrath
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg, Germany
J. Duval
Affiliation:
Astronomy Department at Boston University, 725 Commonwealth Avenue, Boston, MA 02215, USA
R. S. Klessen
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg, Germany
W. Schmidt
Affiliation:
Institut für Astrophysik Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
M.-M. Mac Low
Affiliation:
Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We analyze the statistics and star formation rate obtained in high-resolution numerical experiments of forced supersonic turbulence, and compare with observations. We concentrate on a systematic comparison of solenoidal (divergence-free) and compressive (curl-free) forcing (Federrath et al. 2009 a, b), which are two limiting cases of turbulence driving. Our results show that for the same RMS Mach number, compressive forcing produces a three times larger standard deviation of the density probability distribution. When self-gravity is included in the models, the star formation rate is more than one order of magnitude higher for compressive forcing than for solenoidal forcing.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Elmegreen, B. G. 2008, ApJ, 672, 1006CrossRefGoogle Scholar
Federrath, C., Duval, J., Klessen, R. S., Schmidt, W., & Mac Low, M.-M. 2009a, arXiv:0905.1060Google Scholar
Federrath, C., Klessen, R. S., & Schmidt, W. 2008, ApJ, 688, L79CrossRefGoogle Scholar
Federrath, C., Klessen, R. S., & Schmidt, W. 2009b, ApJ, 692, 364CrossRefGoogle Scholar
Goodman, A. A., Pineda, J. E., & Schnee, S. L. 2009, ApJ, 692, 91CrossRefGoogle Scholar
Hennebelle, P. & Chabrier, G. 2009, ApJ, 702, 1428CrossRefGoogle Scholar
Heyer, M. H., Williams, J. P., & Brunt, C. M. 2006, ApJ, 643, 956CrossRefGoogle Scholar
Hily-Blant, P., Falgarone, E., & Pety, J. 2008, A&A, 481, 367Google Scholar
Krumholz, M. R. & McKee, C. F. 2005, ApJ, 630, 250CrossRefGoogle Scholar
Padoan, P., & Nordlund, Å. 2002, ApJ, 576, 870CrossRefGoogle Scholar