Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-02T21:17:28.207Z Has data issue: false hasContentIssue false

A solar tornado caused by flares

Published online by Cambridge University Press:  06 January 2014

N. K. Panesar
Affiliation:
Max-Planck Institut für Sonnensystemforschung, Max-Planck-Str. 2, 37191, Katlenburg-Lindau email: [email protected], [email protected], [email protected] Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077Göttingen
D. E. Innes
Affiliation:
Max-Planck Institut für Sonnensystemforschung, Max-Planck-Str. 2, 37191, Katlenburg-Lindau email: [email protected], [email protected], [email protected]
S. K. Tiwari
Affiliation:
Max-Planck Institut für Sonnensystemforschung, Max-Planck-Str. 2, 37191, Katlenburg-Lindau email: [email protected], [email protected], [email protected]
B. C. Low
Affiliation:
High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An enormous solar tornado was observed by SDO/AIA on 25 September 2011. It was mainly associated with a quiescent prominence with an overlying coronal cavity. We investigate the triggering mechanism of the solar tornado by using the data from two instruments: SDO/AIA and STEREO-A/EUVI, covering the Sun from two directions. The tornado appeared near to the active region NOAA 11303 that produced three flares. The flares directly influenced the prominence-cavity system. The release of free magnetic energy from the active region by flares resulted in the contraction of the active region field. The cavity, owing to its superior magnetic pressure, expanded to fill this vacated space in the corona. We propose that the tornado developed on the top of the prominence due to the expansion of the prominence-cavity system.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Gibson, S. E. & Fan, Y. 2006, Journal of Geophysical Research (Space Physics), 111, 12103Google Scholar
Hudson, H. S. 2000, ApJ, 531, L75Google Scholar
Hudson, H. S., Acton, L. W., Harvey, K. L., & McKenzie, D. E. 1999, ApJ, 513, L83Google Scholar
Janse, Å. M. & Low, B. C. 2007, A&A, 472, 957Google Scholar
Kitiashvili, I. N., Kosovichev, A. G., et al. 2013, ApJ, 770, 37Google Scholar
Lemen, J. R., Title, A. M., Akin, D. J., et al. 2012, Solar Phys., 275, 17Google Scholar
Li, X., Morgan, H., Leonard, D., & Jeska, L. 2012, ApJ, 752, L22Google Scholar
Mackay, D. H., Karpen, J. T., Ballester, J. L., et al. 2010, Space Sci. Rev., 151, 333Google Scholar
Martin, S. F. 1973, 31, 3Google Scholar
Panesar, N. K., Innes, D. E., Tiwari, S. K., & Low, B. C. 2013, A&A, 549, A105Google Scholar
Pettit, E. 1925, Publications of the Yerkes Observatory, 3, 4Google Scholar
Pettit, E. 1932, ApJ, 76, 9Google Scholar
Tandberg-Hanssen, E., ed. 1995, ASSL, Vol. 199, The nature of solar prominencesCrossRefGoogle Scholar
Zhang, M. & Low, B. C. 2003, ApJ, 584, 479Google Scholar
Zhang, M. & Low, B. C. 2005, ARA&A, 43, 103Google Scholar
Zirker, J. B. 1989, Solar Phys., 119, 341Google Scholar