Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T05:24:32.913Z Has data issue: false hasContentIssue false

Solar subsurface flows of active regions: flux emergence and flare activity

Published online by Cambridge University Press:  26 August 2011

Rudolf Komm
Affiliation:
National Solar Observatory 950 N. Cherry Ave., Tucson, AZ 85719, USA email: [email protected]
Rachel Howe
Affiliation:
National Solar Observatory 950 N. Cherry Ave., Tucson, AZ 85719, USA email: [email protected]
Frank Hill
Affiliation:
National Solar Observatory 950 N. Cherry Ave., Tucson, AZ 85719, USA email: [email protected]
Kiran Jain
Affiliation:
National Solar Observatory 950 N. Cherry Ave., Tucson, AZ 85719, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the temporal variation of subsurface flows associated with active regions within 16 Mm of the solar surface. We have analyzed the subsurface flows of nearly 1000 active and quiet regions applying ring-diagram analysis to Global Oscillation Network Group (GONG) Dopplergram data. We find that newly emerging active regions are characterized by enhanced upflows and fast zonal flows in the near-surface layers, as expected for a flux tube rising from deeper layers of the convection zone. The subsurface flows associated with strong active regions are highly twisted, as indicated by their large vorticity and helicity values. The dipolar pattern exhibited by the zonal and meridional vorticity component leads to the interpretation that these subsurface flows resemble vortex rings, when measured on the spatial scales of the standard ring-diagram analysis.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Haber, D. A., Hindman, B. W., Toomre, J., Bogart, R. S., Larsen, R. M., & Hill, F. 2002, ApJ, 570, 885CrossRefGoogle Scholar
Komm, R. 2007, Astron. Nachr., 328, 269CrossRefGoogle Scholar
Komm, R., Howe, R., & Hill, F. 2011, Solar Phys., 268, 407CrossRefGoogle Scholar
Komm, R., Ferguson, R., Hill, F., Barnes, G., & Leka, K. D. 2011, Solar Phys., 268, 389CrossRefGoogle Scholar
Komm, R. & Hill, F. 2009, J Geophys. Res., A06105Google Scholar
Komm, R., Howe, R., & Hill, F. 2009, Solar Phys., 258, 13CrossRefGoogle Scholar
Moffatt, H. K. & Tsinober, A. 1992, Ann. Rev. Fluid Mech., 24, 281CrossRefGoogle Scholar
Reinard, A. A., Henthorn, J., Komm, R., & Hill, F. 2010, Astrophys. J. Lett., 710, L121CrossRefGoogle Scholar
Shariff, K. & Leonard, A. 1992, Ann. Rev. Fluid Mech., 24, 235CrossRefGoogle Scholar